OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21025–21032

Narrowband terahertz emitters using metamaterial films

Fabio Alves, Brian Kearney, Dragoslav Grbovic, and Gamani Karunasiri  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 21025-21032 (2012)
http://dx.doi.org/10.1364/OE.20.021025


View Full Text Article

Enhanced HTML    Acrobat PDF (1815 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this article we report on metamaterial-based narrowband thermal terahertz (THz) emitters with a bandwidth of about 1 THz. Single band emitters designed to radiate in the 4 to 8 THz range were found to emit as high as 36 W/m2 when operated at 400 °C. Emission into two well-separated THz bands was also demonstrated by using metamaterial structures featuring more complex unit cells. Imaging of heated emitters using a microbolometer camera fitted with THz optics clearly showed the expected higher emissivity from the metamaterial structure compared to low-emissivity of the surrounding aluminum.

© 2012 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(290.6815) Scattering : Thermal emission

ToC Category:
Metamaterials

History
Original Manuscript: July 3, 2012
Revised Manuscript: August 24, 2012
Manuscript Accepted: August 26, 2012
Published: August 29, 2012

Citation
Fabio Alves, Brian Kearney, Dragoslav Grbovic, and Gamani Karunasiri, "Narrowband terahertz emitters using metamaterial films," Opt. Express 20, 21025-21032 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-21025


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: A time of reckoning future applications?” in Proceedings of IEEE Vol. 93(10) Special Issue on: Blue Sky Electronic Technology (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 1722–1743.
  2. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005). [CrossRef]
  3. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics1(9), 517–525 (2007). [CrossRef]
  4. I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology” in Proceedings of IEEE Vol. 95(8) Special issue on: T-Ray Imaging Sensing, & Retection (Institute of Electrical and Electronics Engineers, New York, 2007), 1611–1623.
  5. A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev.19(3), 346–404 (2011). [CrossRef]
  6. S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron.17(1), 38–47 (2011). [CrossRef]
  7. A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006). [CrossRef]
  8. B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett.33(5), 440–442 (2008). [CrossRef] [PubMed]
  9. M. S. Shur and V. Ryzhii, “ New concepts for submillimeter-wave detection and generation,” in Proceedings of 11th GaAs applications symposium, (Munich, 2003), 301–304.
  10. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature420(6912), 153–156 (2002). [CrossRef] [PubMed]
  11. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002). [CrossRef] [PubMed]
  12. M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunneling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett.99(23), 233506 (2011). [CrossRef]
  13. H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012). [CrossRef]
  14. Y. T. Wu, Y.-T. Chang, H.-H. Chen, H.-F. Huang, D.-C. Tzuang, Y.-W. Jiang, P.-E. Chang, and S. C. Lee, “Narrow bandwidth midinfrared waveguide thermal emitters,” IEEE Photon. Technol. Lett.22(15), 1159–1161 (2010). [CrossRef]
  15. S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett.94(7), 071113 (2009). [CrossRef]
  16. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]
  17. J. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011). [CrossRef]
  18. M. K. Gunde and M. Macek, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi A183, 439–449 (2001). [CrossRef]
  19. D. Y. Smith, E. Shiles, and M. Inokuti, “Silicon Dioxide (SiO2),” in Handbook of Optical Constants of Solids Part 2, E. D. Palik, ed. (Academic, 1998).
  20. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt.46(33), 8118–8133 (2007). [CrossRef] [PubMed]
  21. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  22. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20(7), 7165–7172 (2012). [CrossRef] [PubMed]
  23. D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010). [CrossRef]
  24. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010). [CrossRef] [PubMed]
  25. Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express17(22), 20256–20265 (2009). [CrossRef] [PubMed]
  26. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett.34(19), 3012–3014 (2009). [CrossRef] [PubMed]
  27. F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012). [CrossRef]
  28. G. Kirchhoff, “On the relation between the radiating and the absorbing powers of different bodies for light and heat,” Philos. Mag.20, 1–21 (1860).
  29. S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE Jour. Quan. Elec.44(12), 1139–1144 (2008). [CrossRef]
  30. J. M. Palmer and B. G. Grant, “The Art of Radiometry,” ed. (SPIE Press, 2010).
  31. R. A. Wood, “Monolithic silicon microbolometer arrays,” in Semiconductors and Semimetals47: Uncooled Infrared Imaging Arrays and Systems, P. W. Kruse and D.D. Skatrud, eds. (Academic Press, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited