OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21264–21271

Photoluminescence and photoresponse from InSb/InAs-based quantum dot structures

Oscar Gustafsson, Amir Karim, Jesper Berggren, Qin Wang, Carl Reuterskiöld-Hedlund, Christopher Ernerheim-Jokumsen, Markus Soldemo, Jonas Weissenrieder, Sirpa Persson, Susanne Almqvist, Ulf Ekenberg, Bertrand Noharet, Carl Asplund, Mats Göthelid, Jan Y. Andersson, and Mattias Hammar  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 21264-21271 (2012)
http://dx.doi.org/10.1364/OE.20.021264


View Full Text Article

Enhanced HTML    Acrobat PDF (1886 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

InSb-based quantum dots grown by metal-organic vapor-phase epitaxy (MOVPE) on InAs substrates are studied for use as the active material in interband photon detectors. Long-wavelength infrared (LWIR) photoluminescence is demonstrated with peak emission at 8.5 µm and photoresponse, interpreted to originate from type-II interband transitions in a p-i-n photodiode, was measured up to 6 µm, both at 80 K. The possibilities and benefits of operation in the LWIR range (8-12 µm) are discussed and the results suggest that InSb-based quantum dot structures can be suitable candidates for photon detection in the LWIR regime.

© 2012 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(160.1890) Materials : Detector materials
(230.5160) Optical devices : Photodetectors
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Detectors

History
Original Manuscript: June 4, 2012
Revised Manuscript: August 5, 2012
Manuscript Accepted: August 27, 2012
Published: September 4, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Oscar Gustafsson, Amir Karim, Jesper Berggren, Qin Wang, Carl Reuterskiöld-Hedlund, Christopher Ernerheim-Jokumsen, Markus Soldemo, Jonas Weissenrieder, Sirpa Persson, Susanne Almqvist, Ulf Ekenberg, Bertrand Noharet, Carl Asplund, Mats Göthelid, Jan Y. Andersson, and Mattias Hammar, "Photoluminescence and photoresponse from InSb/InAs-based quantum dot structures," Opt. Express 20, 21264-21271 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-21264


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Rogalski, “Material considerations for third generation infrared photon detectors,” Infrared Phys. Technol.50(2-3), 240–252 (2007). [CrossRef]
  2. D. Z. Ting, S. V. Bandara, S. D. Gunapala, J. M. Mumolo, S. A. Keo, C. J. Hill, J. K. Liu, E. R. Blazejewski, S. B. Rafol, and Y.-C. Chang, “Submonolayer quantum dot infrared photodetector,” Appl. Phys. Lett.94(11), 111107 (2009). [CrossRef]
  3. S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, and S. W. Kennerly, “Heterostructures for achieving large responsivity in InAs/GaAs quantum dot infrared photodetectors,” J. Vac. Sci. Technol. B22(3), 1499–1502 (2004). [CrossRef]
  4. M. Razeghi, W. Zhang, H.-C. Lim, S. Tsao, J. Szafraniec, M. Taguchi, and B. Movaghar, “Focal plane arrays based on Quantum Dot Infrared Photodetectors,” Proc. SPIE5838, 125–136 (2005). [CrossRef]
  5. A. V. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010). [CrossRef]
  6. L. Fu, P. Lever, K. Sears, H. H. Tan, and C. Jagadish, “In0.5Ga0.5As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition,” Electron Device Lett.26(9), 628–630 (2005). [CrossRef]
  7. D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys.62(6), 2545–2548 (1987). [CrossRef]
  8. C. J. Hill, J. V. Li, J. M. Mumolo, and S. D. Gunapala, “MBE grown type-II MWIR and LWIR superlattice photodiodes,” Infrared Phys. Technol.50(2-3), 187–190 (2007). [CrossRef]
  9. S. Bogdanov, B. Nguyen, A. M. Hoang, and M. Razeghi, “Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes,” Appl. Phys. Lett.98(18), 183501 (2011). [CrossRef]
  10. N. Gautam, H. S. Kim, S. Myers, E. Plis, M. N. Kutty, M. Naydenkov, B. Klein, L. R. Dawson, and S. Krishna, “Heterojunction bandgap engineered photodetector based on type-II InAs/GaSb superlattice for single color and bicolor infrared detection,” Infrared Phys. Technol.54(3), 273–277 (2011). [CrossRef]
  11. C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, “Mid-infrared quantum dot barrier photodetectors with extended cutoff wavelengths,” Electron. Lett.46(18), 1286–1287 (2010). [CrossRef]
  12. A. G. Norman, N. J. Mason, M. J. Fisher, J. Richardson, A. Krier, P. J. Walker, and G. R. Booker, Structural and optical characterization of MOVPE self-assembled InSb quantum dots in InAs and GaSb matrices,” in Inst. Phys. Conf. Ser. No. 157 353–356 (1997).
  13. P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett.93(9), 091101 (2008). [CrossRef]
  14. A. Krier, X. L. Huang, and A. Hammiche, “Liquid phase epitaxial growth and morphology of InSb quantum dots,” J. Phys. D Appl. Phys.34(6), 874–878 (2001). [CrossRef]
  15. P. J. Carrington, V. A. Solovev, Q. Zhuang, S. V. Ivanov, and A. Krier, “InSb quantum dot LEDs grown by molecular beam epitaxy for mid-infrared applications,” Microelectron. J.40(3), 469–472 (2009). [CrossRef]
  16. V. A. Solovev, O. G. Lyublinskaya, A. N. Semenov, B. Y. Meltser, D. D. Solnyshkov, Y. V. Terentev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kopev, “Room-temperature 3.9–4.3 µm photoluminescence from InSb submonolayers grown by molecular beam epitaxy in an InAs matrix,” Appl. Phys. Lett.86(1), 011109 (2005) (and references therein). [CrossRef]
  17. J. Weissenrieder, M. Göthelid, G. Le Lay, and U. O. Karlsson, “Investigation of the surface phase diagram of Fe(1 1 0)–S,” Surf. Sci.515(1), 135–142 (2002). [CrossRef]
  18. M. Fisher and A. Krier, “Photoluminescence of epitaxial InAs produced by different growth methods,” Infrared Phys. Technol.38(7), 405–413 (1997). [CrossRef]
  19. C. Pryor and M.-E. Pistol, “Band-edge diagrams for strained III–V semiconductor quantum wells, wires, and dots,” Phys. Rev. B72(20), 1–11 (2005). [CrossRef]
  20. D. Z. Ting, A. Soibel, C. J. Hill, S. A. Keo, J. M. Mumolo, and S. D. Gunapala, “High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD),” Proc. SPIE8353, 835332, 835332-8 (2012). [CrossRef]
  21. S. Ivanov, A. Semenov, V. Solovev, O. Lyublinskaya, Y. Terentev, B. Meltser, L. Prokopova, A. Sitnikova, A. Usikova, A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth278(1-4), 72–77 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited