OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21457–21484

Analysis of fine-mode aerosol retrieval capabilities by different passive remote sensing instrument designs

Kirk Knobelspiesse, Brian Cairns, Michael Mishchenko, Jacek Chowdhary, Kostas Tsigaridis, Bastiaan van Diedenhoven, William Martin, Matteo Ottaviani, and Mikhail Alexandrov  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21457-21484 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1465 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Remote sensing of aerosol optical properties is difficult, but multi-angle, multi-spectral, polarimetric instruments have the potential to retrieve sufficient information about aerosols that they can be used to improve global climate models. However, the complexity of these instruments means that it is difficult to intuitively understand the relationship between instrument design and retrieval success. We apply a Bayesian statistical technique that relates instrument characteristics to the information contained in an observation. Using realistic simulations of fine size mode dominated spherical aerosols, we investigate three instrument designs. Two of these represent instruments currently in orbit: the Multiangle Imaging SpectroRadiometer (MISR) and the POLarization and Directionality of the Earths Reflectances (POLDER). The third is the Aerosol Polarimetry Sensor (APS), which failed to reach orbit during recent launch, but represents a viable design for future instruments. The results show fundamental differences between the three, and offer suggestions for future instrument design and the optimal retrieval strategy for current instruments. Generally, our results agree with previous validation efforts of POLDER and airborne prototypes of APS, but show that the MISR aerosol optical thickness uncertainty characterization is possibly underestimated.

© 2012 OSA

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.4991) Remote sensing and sensors : Passive remote sensing
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: July 19, 2012
Revised Manuscript: August 24, 2012
Manuscript Accepted: August 25, 2012
Published: September 4, 2012

Kirk Knobelspiesse, Brian Cairns, Michael Mishchenko, Jacek Chowdhary, Kostas Tsigaridis, Bastiaan van Diedenhoven, William Martin, Matteo Ottaviani, and Mikhail Alexandrov, "Analysis of fine-mode aerosol retrieval capabilities by different passive remote sensing instrument designs," Opt. Express 20, 21457-21484 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. IPCC. Climate Change 2007 – The Physical Science Basis: Contribution of the Working Group I to the Fourth Assessment Report of the IPCC (Cambridge University Press, 2007). [PubMed]
  2. N. Loeb and W. Su, “Direct aerosol radiative forcing uncertainty based on a radiative perturbation analysis,” J. Climate23, 5288–5293 (2010).
  3. J. Hansen, M. Sato, P. Kharecha, and K. von Schuckmann, “Earth’s energy imbalance and implications,” Atmos. Chem. Phys.11, 13421–13449 (2011).
  4. J. Penner, L. Xu, and M. Wang, “Satellite methods underestimate indirect climate forcing by aerosols,” Proc. Natl. Acad. Sci. U.S.A.108, 13404–13408 (2011). [PubMed]
  5. M. Mishchenko, B. Cairns, J. Hansen, L. Travis, R. Burg, Y. Kaufman, J. Vanderlei Martins, and E. Shettle, “Monitoring of aerosol forcing of climate from space: analysis of measurement requirements,” J. Quant. Spectrosc. Radiat. Transf.88, 149–161 (2004).
  6. Y. Kaufman, D. Tanre, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature419, 215–223 (2002). [PubMed]
  7. M. Mishchenko, I. Geogdzhayev, B. Cairns, B. Carlson, J. Chowdhary, A. Lacis, L. Liu, W. Rossow, and L. Travis, “Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective,” J. Quant. Spectrosc. Radiat. Transf.106, 325–347 (2007).
  8. M. Mishchenko, I. Geogdzhayev, L. Liu, A. Lacis, B. Cairns, and L. Travis, “Toward unified satellite climatology of aerosol properties: What do fully compatible MODIS and MISR aerosol pixels tell us?” J. Quant. Spectrosc. Radiat. Transf.110, 402–408 (2009).
  9. R. Kahn, M. Garay, D. Nelson, K. Yau, M. Bull, B. Gaitley, J. Martonchik, and R. Levy, “Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with aeronet and implications for climatological studies,” J. Geophys. Res.112, D18205 (2007).
  10. A. Kokhanovsky, J. Deuzé, D. Diner, O. Dubovik, F. Ducos, C. Emde, M. Garay, R. Grainger, A. Heckel, M. Herman, I. Katsev, J. Keller, R. Levy, P. North, A. Prikhach, V. Rozanov, A. Sayer, Y. Ota, D. Tanré, G. Thomas, and E. Zege, “The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light,” Atmos. Meas. Tech.3, 909–932 (2010).
  11. B. Cairns, “Polarimetric remote sensing of aerosols,” Proc Geosci. Remote Sens. Symp.518–520 (2003).
  12. B. Cairns, F. Waquet, K. Knobelspiesse, J. Chowdhary, and J. Deuzé, “Polarimetric remote sensing of aerosols over land surfaces” in Satellite Aerosol Remote Sensing over Land (Springer, 2009), pp. 295–325.
  13. M. Mishchenko, B. Cairns, G. Kopp, C. Schueler, B. Fafaul, J. Hansen, R. Hooker, T. Itchkawich, H. Maring, and L. Travis, “Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory mission,” Bull. Am. Meteorol. Soc.88, 687–691 (2007).
  14. J. Chowdhary, B. Cairns, M. Mishchenko, and L. Travis, “Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the research scanning polarimeter,” Geophys. Res. Lett.28, 243–246 (2001).
  15. J. Chowdhary, B. Cairns, and L. Travis, “Case studies of aerosol retrievals over the ocean from multiangle, multispectral photopolarimetric remote sensing data,” J. Atmos. Sci.59, 383–397 (2002).
  16. J. Chowdhary, B. Cairns, M. Mishchenko, P. Hobbs, G. Cota, J. Redemann, K. Rutledge, B. Holben, and E. Russell, “Retrieval of aerosol scattering and absorption properties from photopolarimetric observations over the ocean during the clams experiment,” J. Atmos. Sci.62, 1093–1117 (2005).
  17. J. Chowdhary, B. Cairns, M. Mishchenko, and L. Travis, “Using multi-angle multispectral photo-polarimetry of the NASA Glory mission to constrain optical properties of aerosols and clouds: results from four field experiments,” Proc. SPIE5978, 59780G (2005).
  18. J. Chowdhary, B. Cairns, and L. Travis, “Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters,” Appl. Opt.45, 5542–5567 (2006). [PubMed]
  19. K. Knobelspiesse, B. Cairns, M. Ottaviani, R. Ferrare, J. Hair, C. Hostetler, M. Obland, R. Rogers, J. Redemann, Y. Shinozuka, A. Clarke, S. Freitag, S. Howell, V. Kapustin, and C. McNaughton, “Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar,” Atmos. Chem. Phys.11, 7045–7067 (2011).
  20. K. Knobelspiesse, B. Cairns, J. Redemann, R. W. Bergstrom, and A. Stohl, “Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign,” Atmos. Chem. Phys.11, 6245–6263 (2011).
  21. F. Waquet, B. Cairns, K. Knobelspiesse, J. Chowdhary, L. Travis, B. Schmid, and M. Mishchenko, “Polarimetric remote sensing of aerosols over land,” J. Geophys. Res.114, D01206 (2009).
  22. V. Zubko, Y. Kaufman, R. Burg, and J. Martins, “Principal component analysis of remote sensing of aerosols over oceans,” IEEE Trans. Geosci. Remote Sens.45, 730–745 (2007).
  23. D. Tanre, M. Herman, and Y. Kaufman, “Information on aerosol size distribution contained in solar reflected spectral radiances,” J. Geophys. Res.101, 19,043–19,060 (1996).
  24. O. Kalashnikova, M. Garay, A. Davis, D. Diner, and J. Martonchik, “Sensitivity of multi-angle photo-polarimetry to vertical layering and mixing of absorbing aerosols: Quantifying measurement uncertainties,” J. Quant. Spectrosc. Radiat. Transf.112, 2149–2163 (2011).
  25. C. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000).
  26. O. Hasekamp and J. Landgraf, “Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements,” Appl. Opt.46, 3332–3344 (2007). [PubMed]
  27. O. P. Hasekamp, “Capability of multi-viewing-angle photo-polarimetric measurements for the simultaneous retrieval of aerosol and cloud properties,” Atmos. Meas. Tech.3, 839–851 (2010).
  28. C. Rodgers and B. Connor, “Intercomparison of remote sounding instruments,” J. Geophys. Res.108, D34116 (2008).
  29. J. Hansen and L. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev.16, 527–610 (1974).
  30. J. de Haan, P. Bosma, and J. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys.183, 371–391 (1987).
  31. W. De Rooij and C. Van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys.131, 237–248 (1984).
  32. J. Chowdhary, B. Cairns, F. Waquet, K. Knobelspiesse, M. Ottaviani, J. Redemann, L. Travis, and M. Mishchenko, “Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: Analyses of RSP data acquired during the MILAGRO campaign,” Remote Sens. Environ.118, 284–308 (2012).
  33. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am.44, 838–850 (1954).
  34. F. Nicodemus, Geometrical Considerations and Nomenclature for Reflectance (US Dept. of Commerce, National Bureau of Standards, US Govt. Print. Off., 1977).
  35. G. Schaepman-Strub, M. Schaepman, T. Painter, S. Dangel, and J. Martonchik, “Reflectance quantities in optical remote sensing: definitions and case studies,” Remote Sens. Environ.103, 27–42 (2006).
  36. W. Lucht, C. Schaaf, and A. Strahler, “An algorithm for the retrieval of albedo from space using semiempirical BRDF models,” IEEE Trans. Geosci. Remote Sens.38, 977–998 (2000).
  37. C. Schaaf, F. Gao, A. Strahler, W. Lucht, X. Li, T. Tsang, N. Strugnell, X. Zhang, Y. Jin, and J. Muller, “First operational BRDF, albedo nadir reflectance products from MODIS,” Remote Sens. Environ.83, 135–148 (2002).
  38. C. Schaaf, A. Strahler, M. Roman, J. Salomon, and J. Hodges. “Assessment of albedo derived from the moderate-resolution imaging spectroradiometer at the Southern Great Plains site,” in Proceedings of the Sixteenth ARM Science Team Meeting (Alburquerque, NM, 2006).
  39. K. Knobelspiesse, B. Cairns, C. Schaaf, B. Schmid, and M. Román, “Surface BRDF estimation from an aircraft compared to MODIS and ground estimates at the Southern Great Plains site,” J. Geophys. Res.113, D20105 (2008).
  40. L. Curier, G. de Leeuw, P. Kolmonen, A.-M. Sundstrom, L. Sogacheva, and Y. Bennouna, “Aerosol retrieval over land using the (A)ATSR dual-view algorithm,” in Satellite Aerosol Remote Sensing over Land (Springer, 2009).
  41. W. Grey and P. North. “Aerosol optical depth from dual-view (A)ATSR satellite observations,” in Satellite Aerosol Remote Sensing over Land (Springer, 2009).
  42. F. Breon, D. Tanré, P. Lecomte, and M. Herman, “Polarized reflectance of bare soils and vegetation: measurements and models,” IEEE Trans. Geosci. Remote Sens.33, 487–499 (1995).
  43. F. Nadal and F.-M. Breon, “Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements,” IEEE Trans. Geosci. Remote Sens.37, 1709 (1999).
  44. P. Litvinov, O. Hasekamp, B. Cairns, and M. Mishchenko, “Reflection models for soil and vegetation surfaces from multiple-viewing angle photopolarimetric measurements,” J. Quant. Spectrosc. Radiat. Transfer111, 529–539 (2010).
  45. B. Holben, Y. Kaufman, T. Eck, I. Slutsker, D. Tanre, J. Buis, A. Setzer, E. Vermote, and J. Reagan, “AERONET – a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ.66, 1–16 (1998).
  46. O. Dubovik, B. Holben, T. Eck, A. Smirnov, Y. Kaufman, M. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci.59, 590–608 (2002).
  47. G. Myhre, T. Berglen, M. Johnsrud, C. Hoyle, T. Berntsen, S. Christopher, D. Fahey, I. Isaksen, T. Jones, R. Kahn, N. Loeb, P. Quinn, L. Remer, S. Schwartz, and K. Yttri, “Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation,” Atmos. Chem. Phys.9, 1365–1392 (2009).
  48. M. Ottaviani, B. Cairns, J. Chowdhary, B. Van Diedenhoven, K. Knobelspiesse, C. Hostetler, R. Ferrare, S. Burton, J. Hair, M. Obland, and R. Rogers, “Polarimetric retrievals of surface and cirrus clouds properties in the region affected by the deepwater horizon oil spill,” Remote Sens. Environ.121, 389–403 (2012).
  49. Y. Kawata, “Circular polarization of sunlight reflected by planetary atmospheres,” Icarus33, 217–232 (1978).
  50. M. Mishchenko, L. Travis, and A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge Univ. Press, 2006).
  51. S. Persh, Y. Shaham, O. Benami, B. Cairns, M. Mishchenko, J. Hein, and B. Fafaul, “Ground performance measurements of the Glory aerosol polarimetry sensor,” Proc. SPIE7807, 780703 (2010).
  52. Y. Kaufman, D. Tanré, L. Remer, E. Vermote, A. Chu, and B. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,” J. Geophys. Res.102, 17,051–17,067 (1997).
  53. M. King, W. Menzel, Y. Kaufman, D. Tanré, B. Gao, S. Platnick, S. Ackerman, L. Remer, R. Pincus, and P. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens.41, 442–458 (2003).
  54. L. A. Remer, R. G. Kleidman, R. C. Levy, Y. Kaufman, D. Tanré, S. Mattoo, J. V. Martins, C. Ichoku, I. Koren, H. Yu, and B. Holben, “Global aerosol climatology from the MODIS satellite sensors,” J. Geophys. Res.113, D14S07 (2008).
  55. R. Levy, L. Remer, R. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T. Eck, “Global evaluation of the collection 5 MODIS dark-target aerosol products over land,” Atmos. Chem. Phys.10, 10399–10420 (2010).
  56. D. Diner, J. Beckert, T. Reilly, C. Bruegge, J. Conel, R. Kahn, J. Martonchik, T. Ackerman, R. Davies, S. Gerstl, H. Gordon, J. Muller, R. Myneni, P. Sellers, B. Pinty, and M. Verstraete, “Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview,” IEEE Trans. Geosci. Remote Sens.36, 1072–1087 (1998).
  57. J. Martonchik, D. Diner, K. Crean, and M. Bull, “Regional aerosol retrieval results from MISR,” IEEE Trans. Geosci. Remote Sens.40, 1520–1532 (2002).
  58. J. Martonchik, R. Kahn, and D. Diner. “Retrieval of aerosol properties over land using MISR observations,” in Satellite Aerosol Remote Sensing over Land (Springer, 2009), pp. 267–293.
  59. C. Bruegge, W. Abdou, D. Diner, B. Gaitley, M. Helmlinger, R. Kahn, and J. Martonchik. “Validating the MISR radiometric scale for the ocean aerosol science communities.” in Proceedings of The International Workshop on Radiometric and Geometric Calibration (AA. Balkema Publishers, 2004).
  60. D. Tanré, F. M. Bréon, J. L. Deuzé, O. Dubovik, F. Ducos, P. François, P. Goloub, M. Herman, A. Lifermann, and F. Waquet, “Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-train: the PARASOL mission,” Atmos. Meas. Tech.4, 1383–1395 (2011).
  61. T. Anderson, R. Charlson, N. Bellouin, O. Boucher, M. Chin, S. Christopher, J. Haywood, Y. Kaufman, S. Kinne, J. Ogren, L. A. Remer, T. Takemure, D. Tanré, O. Torres, C. Trepte, B. Wielicki, D. Winker, and H. Yu, “An “A-Train” strategy for quantifying direct climate forcing by anthropogenic aerosols,” Bull. Am. Meteorol. Soc.86, 1795–1809 (2005).
  62. P. Deschamps, F. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. Buriez, and G. Seze, “The POLDER mission: Instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens.32, 598–615 (1994).
  63. O. Dubovik, M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. L. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations,” Atmos. Meas. Tech.4, 975–1018 (2011).
  64. O. Hasekamp, P. Litvinov, and A. Butz, “Aerosol properties over the ocean from parasol multiangle photopolarimetric measurements,” J. Geophys. Res.116, D14204 (2011).
  65. B. Fougnie, G. Bracco, B. Lafrance, C. Ruffel, O. Hagolle, and C. Tinel, “PARASOL in-flight calibration and performance,” Appl. Opt.46, 5435–5451 (2007). [PubMed]
  66. D. Diner, W. Abdou, C. Bruegge, J. Conel, K. Crean, B. Gaitley, M. Helmlinger, R. Kahn, J. Martonchik, S. Pilorz, and B. Holben,” “MISR aerosol optical depth retrievals over southern Africa during the SAFARI-2000 dry season campaign,” Geophys. Res. Lett.28, 3127–3130 (2001).
  67. S. Christopher and J. Wang, “Intercomparison between multi-angle imaging spectroradiometer (MISR) and sunphotometer aerosol optical thickness in dust source regions over China: implications for satellite aerosol retrievals and radiative forcing calculations,” Tellus, Ser. B56, 451–456 (2004).
  68. Y. Liu, J. Sarnat, B. Coull, P. Koutrakis, and D. Jacob, “Validation of multiangle imaging spectroradiometer (MISR) aerosol optical thickness measurements using aerosol robotic network (AERONET) observations over the contiguous United States,” J. Geophys. Res.109, D06205 (2004).
  69. J. Martonchik, D. Diner, R. Kahn, B. Gaitley, and B. Holben, “Comparison of MISR and AERONET aerosol optical depths over desert sites,” Geophys. Res. Lett.31, L16102 (2004).
  70. R. Kahn, B. Gaitley, J. Martonchik, D. Diner, K. Crean, and B. Holben. “Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations,” J. Geophys. Res.110, D10S04 (2005).
  71. W. Abdou, D. Diner, J. Martonchik, C. Bruegge, R. Kahn, B. Gaitley, K. Crean, L. Remer, and B. Holben, “Comparison of coincident multiangle imaging spectroradiometer and moderate resolution imaging spectroradiometer aerosol optical depths over land and ocean scenes containing aerosol robotic network sites,” J. Geophys. Res.110, D10S07 (2005).
  72. X. Jiang, Y. Liu, B. Yu, and M. Jiang, “Comparison of MISR aerosol optical thickness with AERONET measurements in Beijing metropolitan area,” Remote Sens. Environ.107, 45–53 (2007).
  73. M. Mishchenko, L. Liu, L. Travis, B. Cairns, and A. Lacis, “Toward unified satellite climatology of aerosol properties: 3. MODIS versus MISR versus AERONET,” J. Quant. Spectrosc. Radiat. Transf.111, 540–5522010.
  74. R. Levy, L. Remer, D. Tanré, Y. Kaufman, C. Ichoku, B. Holben, J. Livingston, P. Russell, and H. Maring, “Evaluation of the moderate-resolution imaging spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE,” J. Geophys. Res.108, D198594 (2003).
  75. L. Remer, Y. Kaufman, D. Tanré, S. Mattoo, D. Chu, J. Martins, R. Li, C. Ichoku, R. Levy, R. Kleidman, T. Eck, E. Vermote, and B. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci.62, 947–973 (2005).
  76. L. Remer, Y. Kaufman, and R. Kleidman, “Comparison of three years of Terra and Aqua MODIS aerosol optical thickness over the global oceans,” IEEE Lett. Geosci. Remote Sens.3, 537– 540 (2006).
  77. R. Kahn, D. Nelson, M. Garay, R. Levy, M. Bull, D. Diner, J. Martonchik, S. Paradise, E. Hansen, and L. Remer, “MISR aerosol product attributes and statistical comparisons with MODIS,” IEEE Trans. Geosci. Remote Sens.47, 4095–4114 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited