OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21485–21494

Detailed simulation of structural color generation inspired by the Morpho butterfly

Michael A. Steindorfer, Volker Schmidt, Maria Belegratis, Barbara Stadlober, and Joachim R. Krenn  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21485-21494 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1660 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The brilliancy and variety of structural colors found in nature has become a major scientific topic in recent years. Rapid-prototyping processes enable the fabrication of according structures, but the technical exploitation requires a profound understanding of structural features and material properties regarding the generation of reflected color. This paper presents an extensive simulation of the reflectance spectra of a simplified 2D Morpho butterfly wing model by utilizing the finite-difference time-domain method. The structural parameters are optimized for reflection in a given spectral range. A comparison to simpler models, such as a plane dielectric layer stack, provides an understanding of the origin of the reflection behavior. We find that the wavelength of the reflection maximum is mainly set by the lateral dimensions of the structures. Furthermore small variations of the vertical dimensions leave the spectral position of the reflectance wavelength unchanged, potentially reducing grating effects.

© 2012 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: May 25, 2012
Revised Manuscript: July 22, 2012
Manuscript Accepted: August 24, 2012
Published: August 5, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Michael A. Steindorfer, Volker Schmidt, Maria Belegratis, Barbara Stadlober, and Joachim R. Krenn, "Detailed simulation of structural color generation inspired by the Morpho butterfly," Opt. Express 20, 21485-21494 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci.363(1502), 2465–2480 (2008). [CrossRef] [PubMed]
  2. Y.-Y. Diao and X.-Y. Liu, “Mysterious coloring: structural origin of color mixing for two breeds of Papilio butterflies,” Opt. Express19(10), 9232–9241 (2011). [CrossRef] [PubMed]
  3. D. Pantelić, S. Curčić, S. Savić-Šević, A. Korać, A. Kovačević, B. Curčić, and B. Bokić, “High angular and spectral selectivity of purple emperor (Lepidoptera: Apatura iris and A. ilia) butterfly wings,” Opt. Express19(7), 5817–5826 (2011). [CrossRef] [PubMed]
  4. S. Yoshioka and S. Kinoshita, “Polarization-sensitive color mixing in the wing of the Madagascan sunset moth,” Opt. Express15(5), 2691–2701 (2007). [CrossRef] [PubMed]
  5. S. Yoshioka and S. Kinoshita, “Effect of macroscopic structure in iridescent color of the peacock feathers,” Forma17, 169–181 (2002).
  6. F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express17(18), 16183–16191 (2009). [CrossRef] [PubMed]
  7. M. Inchaussandague, D. Skigin, C. Carmaran, S. Rosenfeldt, and C. Universitaria, “Structural color in Myxomycetes,” Opt. Express18(15), 16055–16063 (2010). [CrossRef] [PubMed]
  8. M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010). [CrossRef] [PubMed]
  9. J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.-G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, “Biomimetic isotropic nanostructures for structural coloration,” Adv. Mater. (Deerfield Beach Fla.)22(26-27), 2939–2944 (2010). [CrossRef] [PubMed]
  10. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008). [CrossRef]
  11. A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt.2(6), R15–R28 (2000). [CrossRef]
  12. J. Zhang, J.-Y. Ou, N. Papasimakis, Y. Chen, K. F. Macdonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express19(23), 23279–23285 (2011). [CrossRef] [PubMed]
  13. L. Eadie and T. K. Ghosh, “Biomimicry in textiles: past, present and potential. An overview,” J. R. Soc. Interface8(59), 761–775 (2011). [CrossRef] [PubMed]
  14. W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, and H. Ogawa, “Novel photoanode structure templated from butterfly wing scales,” Chem. Mater.21(1), 33–40 (2009). [CrossRef]
  15. X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sensor. Actuat. A-Phys167, 367–373 (2011).
  16. D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(5), 051924 (2009). [CrossRef] [PubMed]
  17. R. T. Lee and G. S. Smith, “Detailed electromagnetic simulation for the structural color of butterfly wings,” Appl. Opt.48(21), 4177–4190 (2009). [CrossRef] [PubMed]
  18. S. Banerjee, J. B. Cole, and T. Yatagai, “Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method,” Micron38(2), 97–103 (2007). [CrossRef] [PubMed]
  19. Lumerical, “FDTD Solutions,” http://www.lumerical.com/ .
  20. MathWorks, “Matlab,” http://www.mathworks.de/ .
  21. E. D. Palik, Handbook of Optical Constants (Academic Press, 1985).
  22. J. B. Schneider, “Plane waves in FDTD simulations and a nearly perfect total-field/scattered-field boundary,” IEEE Trans. Antenn. Propag.52(12), 3280–3287 (2004). [CrossRef]
  23. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited