OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21715–21721

Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer

Sheng Liu, Peng Li, Tao Peng, and Jianlin Zhao  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 21715-21721 (2012)
http://dx.doi.org/10.1364/OE.20.021715


View Full Text Article

Enhanced HTML    Acrobat PDF (2026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a flexible approach to generate arbitrary vector beams with a trapezoid Sagnac interferometer. With the interferometer, the different orders of two orthogonally polarized beams from computer-generated holograms coincide with each other in Fourier spectrum domain, and coaxially combine into the vector beams. This approach provides convenient way to experimentally study the properties of vector beams with complex polarization.

© 2012 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5790) Instrumentation, measurement, and metrology : Sagnac effect
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: July 16, 2012
Revised Manuscript: August 19, 2012
Manuscript Accepted: August 19, 2012
Published: September 6, 2012

Citation
Sheng Liu, Peng Li, Tao Peng, and Jianlin Zhao, "Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer," Opt. Express 20, 21715-21721 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-21715


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009). [CrossRef]
  2. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  3. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  4. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008). [CrossRef]
  5. X. Jiao, S. Liu, Q. Wang, X. Gan, P. Li, and J. Zhao, “Redistributing energy flow and polarization of a focused azimuthally polarized beam with rotationally symmetric sector-shaped obstacles,” Opt. Lett.37(6), 1041–1043 (2012). [CrossRef] [PubMed]
  6. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett.96(7), 073903 (2006). [CrossRef] [PubMed]
  7. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett.99(7), 073901 (2007). [CrossRef] [PubMed]
  8. X. L. Wang, J. Chen, Y. Li, J. Ding, C. S. Guo, and H. T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett.105(25), 253602 (2010). [CrossRef] [PubMed]
  9. O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Y. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express20(4), 3563–3571 (2012). [CrossRef] [PubMed]
  10. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett.31(11), 1726–1728 (2006). [CrossRef] [PubMed]
  11. H. Wang, L. Shi, G. Yuan, X. Miao, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett.89(17), 171102 (2006). [CrossRef]
  12. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett.33(2), 122–124 (2008). [CrossRef] [PubMed]
  13. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007). [CrossRef]
  14. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996). [CrossRef] [PubMed]
  15. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001). [CrossRef]
  16. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements,” Opt. Lett.29(3), 238–240 (2004). [CrossRef] [PubMed]
  17. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett.32(11), 1468–1470 (2007). [CrossRef] [PubMed]
  18. P. B. Phua, W. J. Lai, Y. L. Lim, K. S. Tiaw, B. C. Lim, H. H. Teo, and M. H. Hong, “Mimicking optical activity for generating radially polarized light,” Opt. Lett.32(4), 376–378 (2007). [CrossRef] [PubMed]
  19. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt.29(15), 2234–2239 (1990). [CrossRef] [PubMed]
  20. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J. F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A22(5), 984–991 (2005). [CrossRef] [PubMed]
  21. V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer,” Appl. Opt.45(33), 8393–8399 (2006). [CrossRef] [PubMed]
  22. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett.32(24), 3549–3551 (2007). [CrossRef] [PubMed]
  23. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9(3), 78 (2007). [CrossRef]
  24. P. H. Jones, M. Rashid, M. Makita, and O. M. Maragò, “Sagnac interferometer method for synthesis of fractional polarization vortices,” Opt. Lett.34(17), 2560–2562 (2009). [CrossRef] [PubMed]
  25. X. L. Wang, Y. Li, J. Chen, C. S. Guo, J. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express18(10), 10786–10795 (2010). [CrossRef] [PubMed]
  26. H. Chen, J. Hao, B. F. Zhang, J. Xu, J. Ding, and H. T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett.36(16), 3179–3181 (2011). [CrossRef] [PubMed]
  27. S. Tripathi and K. C. Toussaint., “Versatile generation of optical vector fields and vector beams using a non-interferometric approach,” Opt. Express20(10), 10788–10795 (2012). [CrossRef] [PubMed]
  28. C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Helico-conical optical beams: a product of helical and conical phase fronts,” Opt. Express13(5), 1749–1760 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited