OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21722–21728

Ultralow-loss polycrystalline silicon waveguides and high uniformity 1x12 MMI fanout for 3D photonic integration

David Kwong, John Covey, Amir Hosseini, Yang Zhang, Xiaochuan Xu, and Ray T. Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21722-21728 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1646 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated the feasibility of multimode polysilicon waveguides to demonstrate the suitability of polysilicon as a candidate for multilayer photonic applications. Solid Phase Crystallization (SPC) with a maximum temperature of 1000°C is used to create polysilicon on thermally grown SiO2. We then measure the propagation losses for various waveguide widths on both polysilicon and crystalline silicon platforms. We find that as the width increases for polysilicon waveguides, the propagation loss decreases similar to crystalline silicon waveguides. At a waveguide width of 10µm, polysilicon and crystalline silicon waveguides have propagation losses of 0.56dB/cm and 0.31 dB/cm, respectively, indicating there is little bulk absorption from the polysilicon and is the lowest propagation loss for polysilicon demonstrated to date. In addition, the first 1x12 polysilicon MMI is demonstrated with a low insertion loss of −1.29dB and a high uniformity of 1.07dB. These results vindicate the use of polysilicon waveguides of varying widths in photonic integrated circuits.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(200.4650) Optics in computing : Optical interconnects
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

Original Manuscript: July 17, 2012
Revised Manuscript: August 30, 2012
Manuscript Accepted: August 30, 2012
Published: September 6, 2012

David Kwong, John Covey, Amir Hosseini, Yang Zhang, Xiaochuan Xu, and Ray T. Chen, "Ultralow-loss polycrystalline silicon waveguides and high uniformity 1x12 MMI fanout for 3D photonic integration," Opt. Express 20, 21722-21728 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19(18), 17758–17765 (2011). [CrossRef] [PubMed]
  2. C. W. Holzwarth, J. S. Orcutt, H. Li, M. A. Popovic, V. Stojanovic, J. L. Hoyt, R. J. Ram, and H. I. Smith, “Localized substrate removal technique enabling strong-confinement microphotonics in bulk Si CMOS processes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThKK5.
  3. J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys.50, 120208 (2011). [CrossRef]
  4. S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express18(24), 25283–25291 (2010). [CrossRef] [PubMed]
  5. S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, and M. Schaekers, “Thermal trimming and tuning of hydrogenated amorphous silicon nanophotonic devices,” Appl. Phys. Lett.97(7), 071120 (2010). [CrossRef]
  6. T. Kamins, Polycrystalline Silicon for Integrated Circuits and Displays 2nd ed. (Kluwer, 1998).
  7. S. Zhu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides,” Opt. Express17(23), 20891–20899 (2009). [CrossRef] [PubMed]
  8. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (approximately 6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express16(9), 6425–6432 (2008). [CrossRef] [PubMed]
  9. K. Preston, B. Schmidt, and M. Lipson, “Polysilicon photonic resonators for large-scale 3D integration of optical networks,” Opt. Express15(25), 17283–17290 (2007). [CrossRef] [PubMed]
  10. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express17(7), 5118–5124 (2009). [CrossRef] [PubMed]
  11. L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater.29(12), 1380–1386 (2000). [CrossRef]
  12. J. S. Orcutt, S. D. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. J. Ram, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express20(7), 7243–7254 (2012). [CrossRef] [PubMed]
  13. A. Hosseini, D. N. Kwong, Y. Zhang, H. Subbaraman, X. Xu, and R. T. Chen, “1xN multimode interference beam splitter design techniques for on-chip optical interconnections,” IEEE J Sel Top Quantum Electron.17(3), 510–515 (2011). [CrossRef]
  14. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express14(2), 664–669 (2006). [CrossRef] [PubMed]
  15. M. K. Hatalis and D. W. Greve, “Large grain polycrystalline silicon by low-temperature annealing of low-pressure chemical vapor deposited amorphous silicon films,” J. Appl. Phys.63(7), 2260–2266 (1988). [CrossRef]
  16. E. Ibok and S. Garg, “A characterization of the effect of deposition temperature on polysilicon properties,” J. Electrochem. Soc.140(10), 2927 (1993). [CrossRef]
  17. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  18. M. J. Kobrinsky, B. A. Block, J. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” ITJ8, 129–142 (2004).
  19. D. Kwong, Y. Zhang, A. Hosseini, Y. Liu, and R. T. Chen, “1 X 12 even fanout using multimode interference optical beam splitter on silicon nanomembrane,” Electron. Lett.46(18), 1281–1283 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited