OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21729–21738

Fiber-optic waveguide coupled surface plasmon resonance sensor

Jae Heon Ahn, Tae Yeon Seong, Won Mok Kim, Taek Sung Lee, Inho Kim, and Kyeong-Seok Lee  »View Author Affiliations


Optics Express, Vol. 20, Issue 19, pp. 21729-21738 (2012)
http://dx.doi.org/10.1364/OE.20.021729


View Full Text Article

Enhanced HTML    Acrobat PDF (994 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel approach to give an excellent tunability and self-referencing capability was presented by applying a concept of waveguide coupled surface plasmon resonance mode to a fiber-optic sensor. The presence of dielectric waveguide sandwiched between two metal layers made it possible to precisely tune the resonance wavelength in a broad range from visible to infrared region and to generate multiple modes which may be selectively used for suitable applications. Our approach also verified the potential capability of self-referencing based on a remarkable difference in sensitivity between the plasmonic and waveguide modes excited by p- and s-polarized lights, respectively, without using an additional reference channel. Experimental measurement carried out on sucrose solutions with varying concentration demonstrated the feasibility of our approach.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: July 17, 2012
Revised Manuscript: September 4, 2012
Manuscript Accepted: September 4, 2012
Published: September 6, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Jae Heon Ahn, Tae Yeon Seong, Won Mok Kim, Taek Sung Lee, Inho Kim, and Kyeong-Seok Lee, "Fiber-optic waveguide coupled surface plasmon resonance sensor," Opt. Express 20, 21729-21738 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-19-21729


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem.12(3), 213–220 (1993). [CrossRef]
  2. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J.7(8), 1118–1129 (2007). [CrossRef]
  3. C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, “Fiber optic surface plasmon resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express19(S6Suppl 6), A1175–A1183 (2011). [CrossRef] [PubMed]
  4. D. Monzón-Hernández, J. Villatoro, D. Talavera, and D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt.43(6), 1216–1220 (2004). [CrossRef] [PubMed]
  5. R. Kashyap and G. Nemova, “Surface plasmon resonance-based fiber and planar waveguide sensors,” J. Sens.2009, 1–9 (2009). [CrossRef]
  6. B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens.1–12 (2009). [CrossRef]
  7. S. M. Tripathi, A. Kumar, E. Marin, and J. P. Meunier, “Side-polished optical fiber grating-based refractive index sensors utilizing the pure surface plasmon polariton,” J. Lightwave Technol.26(13), 1980–1985 (2008). [CrossRef]
  8. Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-referencing in optical-fiber surface plasmon resonance sensors,” IEEE Photon. Technol. Lett.19(24), 1958–1960 (2007). [CrossRef]
  9. W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett.30(22), 2988–2990 (2005). [CrossRef] [PubMed]
  10. E. K. Akowuah, T. Gorman, S. Haxha, and J. V. Oliver, “Dual channel planar waveguide surface plasmon resonance biosensor for an aqueous environment,” Opt. Express18(24), 24412–24422 (2010). [CrossRef] [PubMed]
  11. L. L. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem.71(22), 5116–5122 (1999). [CrossRef]
  12. R. Slavik, J. Homola, and J. Ctyroky, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem.51(1-3), 311–315 (1998). [CrossRef]
  13. A. Lahav, A. Shalabaney, and I. Abdulhalim, “Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer,” J Nanophotonics3, 031501 (2009).
  14. A. Shalabney and I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett.37(7), 1175–1177 (2012). [CrossRef] [PubMed]
  15. J. T. Hastings, J. Guo, P. D. Keathley, P. B. Kumaresh, Y. Wei, S. Law, and L. G. Bachas, “Optimal self-referenced sensing using long- and short- range surface plasmons,” Opt. Express15(26), 17661–17672 (2007). [CrossRef] [PubMed]
  16. F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron.20(3), 633–642 (2004). [CrossRef] [PubMed]
  17. K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel)10(12), 11390–11399 (2010). [CrossRef] [PubMed]
  18. H. Y. Lin, Y. C. Tsao, W. H. Tsai, Y. W. Yang, T. R. Yan, and B. C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED,” Sens. Actuators A Phys.138(2), 299–305 (2007). [CrossRef]
  19. H. Y. Lin, W. H. Tsai, Y. C. Tsao, and B. C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt.46(5), 800–806 (2007). [CrossRef] [PubMed]
  20. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008). [CrossRef] [PubMed]
  21. T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev.4(3), 354–357 (1997). [CrossRef]
  22. Film WizardTM, Optical Thin Film software, (Scientific Computing International, Carlsbad, CA, USA). http://www.sci-soft.com/Film%20Wizard.htm .
  23. Y. Xu, N. B. Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre-optic sensors,” J. Mod. Opt.47(6), 1099–1110 (2000). [CrossRef]
  24. Ocean Optics Product Catalog, (2012). http://www.oceanoptics.com/catalog/Ocean_Optics_Catalog_2012.pdf .
  25. I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B Chem.7(1-3), 771–774 (1992). [CrossRef]
  26. C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett.99(4), 041118 (2011). [CrossRef]
  27. B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, “Near-infrared surface plasmon resonance measurements of ultrathin films. 1. angle shift and SPR imaging experiments,” Anal. Chem.71(18), 3928–3934 (1999). [CrossRef]
  28. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: A novel tool for real time sensing of variations in living cells,” Biophys. J.90(7), 2592–2599 (2006). [CrossRef] [PubMed]
  29. S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. P. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface plasmon resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express17(1), 293–303 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited