OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 19 — Sep. 10, 2012
  • pp: 21815–21820

Thin film MoS2 nanocrystal based ultraviolet photodetector

S. Alkis, T. Öztaş, L. E. Aygün, F. Bozkurt, A. K. Okyay, and B. Ortaç  »View Author Affiliations

Optics Express, Vol. 20, Issue 19, pp. 21815-21820 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1985 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the development of UV range photodetector based on molybdenum disulfide nanocrystals (MoS2-NCs). The inorganic MoS2-NCs are produced by pulsed laser ablation technique in deionized water and the colloidal MoS2-NCs are characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction and UV/VIS absorption measurements. The photoresponse studies indicate that the fabricated MoS2-NCs photodetector (MoS2-NCs PD) operates well within 300-400 nm UV range, with diminishing response at visible wavelengths, due to the MoS2-NCs absorption characteristics. The structural and the optical properties of laser generated MoS2-NCs suggest promising applications in the field of photonics and optoelectronics.

© 2012 OSA

OCIS Codes
(230.5160) Optical devices : Photodetectors
(310.0310) Thin films : Thin films
(350.3390) Other areas of optics : Laser materials processing

ToC Category:

Original Manuscript: July 26, 2012
Revised Manuscript: August 29, 2012
Manuscript Accepted: September 4, 2012
Published: September 7, 2012

S. Alkis, T. Öztaş, L. E. Aygün, F. Bozkurt, A. K. Okyay, and B. Ortaç, "Thin film MoS2 nanocrystal based ultraviolet photodetector," Opt. Express 20, 21815-21820 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, X. Wang, “Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances,” Appl. Phys. Lett. 100(12), 123104 (2012). [CrossRef]
  2. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011). [CrossRef] [PubMed]
  3. Q. Li, J. T. Newberg, E. C. Walther, J. C. Hemminger, R. M. Penner, “Polycrystalline molybdenum disulfide (2H-MoS2) nano- and microribbons by electrochemical/chemical synthesis,” Nano Lett. 4(2), 277–281 (2004). [CrossRef]
  4. M. Shanmugam, T. Bansal, C. A. Durcan, B. Yu, “Molybdenum disulfide/ titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell,” Appl. Phys. Lett. 100(15), 153901 (2012). [CrossRef]
  5. Y. Yoon, K. Ganapathi, S. Salahuddin, “How good can monolayer MoS₂ transistors be?” Nano Lett. 11(9), 3768–3773 (2011). [CrossRef] [PubMed]
  6. S. Ross, A. Sussman, “Surface oxidation of molybdenum disulfide,” J. Phys. Chem. 59(9), 889–892 (1955). [CrossRef]
  7. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6(1), 74–80 (2012). [CrossRef] [PubMed]
  8. R. Tenne, L. Margulis, M. Genut, G. Hodes, “Polyhedral and cylindirical structures of tungsten disulphide,” Nature 360(6403), 444–446 (1992). [CrossRef]
  9. M. Redlich, A. Katz, L. Rapoport, H. D. Wagner, Y. Feldman, R. Tenne, “Improved orthodontic stainless steel wires coated with inorganic fullerene-like nanoparticles of WS2 impregnated in electroless nickel-phosphorous film,” Dent. Mater. 24(12), 1640–1646 (2008). [CrossRef] [PubMed]
  10. C. L. Stender, E. C. Greyson, Y. Babayan, T. W. Odom, “Patterned MoS2 nanostructures over-centimeter square areas,” Adv. Mater. (Deerfield Beach Fla.) 17(23), 2837–2841 (2005). [CrossRef]
  11. H. Wu, R. Yang, B. Song, Q. Han, J. Li, Y. Zhang, Y. Fang, R. Tenne, C. Wang, “Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water,” ACS Nano 5(2), 1276–1281 (2011). [CrossRef] [PubMed]
  12. M. Nath, C. N. R. Rao, “Nanotubes of group 4 metal disulfides,” Angew. Chem. 114(18), 3601–3604 (2002). [CrossRef]
  13. G. R. Samarodnitzky-Naveh, M. Redlich, L. Rapoport, Y. Feldman, R. Tenne, “ Inorganic fullerene-like tungsten disulfide nanocoating for friction reduction of nickel–titanium alloys,” Nanomedicine 4, 943–950 (2009). [CrossRef] [PubMed]
  14. H. Liu, P. D. Ye, “MoS2 nanoribbon transistors: Transition from depletion mode to enhancement mode by channel-width trimming,” IEEE Electron Device Lett. 33, 546–548 (2012). [CrossRef]
  15. E. Gourmelon, O. Lignier, H. Hodouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, J. Salardenne, “MS2 (M=W, Mo) photosensitive thin films for solar cells,” Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997). [CrossRef]
  16. J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 331(6017), 568–571 (2011). [CrossRef] [PubMed]
  17. Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, J. Lou, “Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate,” Small 8(7), 966–971 (2012). [CrossRef] [PubMed]
  18. C. M. Zelenski, P. K. Dorhout, “Templete synthesis of near-monodisperse microscale nanofibers and nanotubes of MoS2,” J. Am. Chem. Soc. 120(4), 734–742 (1998). [CrossRef]
  19. W. K. Hsu, B. H. Chang, Y. Q. Zhu, W. Q. Han, H. Terrones, M. Terrones, N. Grobert, A. K. Cheetham, H. W. Kroto, D. R. M. Walton, “An alternative route to molybdenum disulfide nanotubes,” J. Am. Chem. Soc. 122(41), 10155–10158 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 3 Fig. 1 Fig. 2
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited