OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1001–1012

Directed assembly of optically bound matter

Michael D. Summers, Richard D. Dear, Jonathan M. Taylor, and Grant A.D. Ritchie  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1001-1012 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1166 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a study of optically bound matter formation in a counter-propagating evanescent field, exploiting total internal reflection on a prism surface. Small ensembles of silica microspheres are assembled in a controlled manner using optical tweezers. The structures and dynamics of the resulting optically bound chains are interpreted using a simulation implementing generalized Lorentz-Mie theory. In particular, we observe enhancement of the scattering force along the propagation direction of the optically bound colloidal chains leading to a microscopic analogue of a driven pendulum which, at least superficially, resembles Newton’s cradle.

© 2012 OSA

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: September 26, 2011
Revised Manuscript: November 15, 2011
Manuscript Accepted: December 2, 2011
Published: January 4, 2012

Michael D. Summers, Richard D. Dear, Jonathan M. Taylor, and Grant A.D. Ritchie, "Directed assembly of optically bound matter," Opt. Express 20, 1001-1012 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Dholakia and P. Zemánek, “Gripped by light: Optical binding,” Rev. Mod. Phys.82(2), 1767–1791 (2010). [CrossRef]
  2. C. D. Mellor, J. Leckner, and C. D. Bain, “Pattern formation in evanescent wave optical traps,” Proc. SPIE5930, 59301C, 59301C-10 (2005). [CrossRef]
  3. C. D. Mellor and C. D. Bain, “Array formation in evanescent waves,” ChemPhysChem7(2), 329–332 (2006). [CrossRef] [PubMed]
  4. M. Šiler, M. Sery, T. Cizmar, and P. Zemanek, “Submicron particle localization using evanescent field,” Proc. SPIE5930, 59300R, 59300R-9 (2005). [CrossRef]
  5. M. Šiler, T. Cizmar, M. Sery, and P. Zemanek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B84(1-2), 157–165 (2006). [CrossRef]
  6. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett.17(11), 772–774 (1992). [CrossRef] [PubMed]
  7. M. Gu, J.-B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett.84(21), 4236 (2004). [CrossRef]
  8. C. D. Mellor, T. A. Fennerty, and C. D. Bain, “Polarization effects in optically bound particle arrays,” Opt. Express14(21), 10079–10088 (2006). [CrossRef] [PubMed]
  9. P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett.88(22), 221116 (2006). [CrossRef]
  10. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73(8), 085417 (2006). [CrossRef]
  11. M. D. Summers, R. D. Dear, J. M. Taylor, and G. A. D. Ritchie, “Controlled formation of optically bound matter in evanescent fields,” Proc. SPIE7762, 776213, 776213-8 (2010). [CrossRef]
  12. N. J. van Leeuwen, L. J. Moore, W. D. Partridge, R. Peverall, G. A. D. Ritchie, and M. D. Summers, “Near-field optical trapping with an actively-locked cavity,” J. Opt.13(4), 044007 (2011). [CrossRef]
  13. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004). [CrossRef] [PubMed]
  14. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989). [CrossRef] [PubMed]
  15. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science249(4970), 749–754 (1990). [CrossRef] [PubMed]
  16. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002). [CrossRef] [PubMed]
  17. N. K. Metzger, K. Dholakia, and E. M. Wright, “Observation of bistability and hysteresis in optical binding of two dielectric spheres,” Phys. Rev. Lett.96(6), 068102 (2006). [CrossRef] [PubMed]
  18. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett.18(21), 1867–1869 (1993). [CrossRef] [PubMed]
  19. M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett.96(14), 143902 (2006). [CrossRef] [PubMed]
  20. V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical Levitation in a Bessel Light Beam,” Appl. Phys. Lett.85(18), 4001 (2004). [CrossRef]
  21. V. Karásek, O. Brzobohaty, and P. Zemanek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt.11(3), 034009 (2009). [CrossRef]
  22. J. M. Taylor and G. D. Love, “Optical binding mechanisms: a conceptual model for Gaussian beam traps,” Opt. Express17(17), 15381–15389 (2009). [CrossRef] [PubMed]
  23. P. C. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B64(3), 035422 (2001). [CrossRef]
  24. Y. L. Xu and B. A. S. Gustafson, “Comparison between multisphere light-scattering calculations: rigorous solution and discrete-dipole approximation,” Astrophys. J.513(2), 894–909 (1999). [CrossRef]
  25. J. M. Taylor, L. Y. Wong, C. D. Bain, and G. D. Love, “Emergent properties in optically bound matter,” Opt. Express16(10), 6921–6929 (2008). [CrossRef] [PubMed]
  26. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989). [CrossRef]
  27. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. Lond. A433(1889), 599–614 (1991). [CrossRef]
  28. H. Chew, D.-S. Wang, and M. Kerker, “Elastic scattering of evanescent electromagnetic waves,” Appl. Opt.18(15), 2679–2687 (1979). [CrossRef] [PubMed]
  29. E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antenn. Propag.41(3), 295–303 (1993). [CrossRef]
  30. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  31. S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun.108(1-3), 133–143 (1994). [CrossRef]
  32. G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A8(3), 483–489 (1991). [CrossRef]
  33. D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf.109(5), 770–788 (2008). [CrossRef]
  34. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions (Dover, 1972).
  35. P. Zemanek, A. Jonas, P. Jakl, J. Jezek, M. Sery, and M. Liska, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun.220(4-6), 401–412 (2003). [CrossRef]
  36. J. Lekner, “Force on a scatterer in counter-propagating coherent beams,” J. Opt. A, Pure Appl. Opt.7(5), 238–248 (2005). [CrossRef]
  37. V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett.101(14), 143601 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3066 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited