OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1046–1059

Aggregate behavior of branch points - persistent pairs

Denis W. Oesch, Darryl J. Sanchez, and Carolyn M. Tewksbury-Christle  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1046-1059 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (6249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light propagating through atmospheric turbulence acquires spatial and temporal phase variations. For strong enough turbulence conditions, interference from these phase variations within the optical wave can produce branch points; positions of zero amplitude. Under the assumption of a layered turbulence model, our previous work has shown that these branch points can be used to estimate the number and velocities of atmospheric layers. Key to this previous demonstration was the property of branch point persistence. Branch points from a single turbulence layer persist in time and through additional layers. In this paper we extend persistence to include branch point pairs. We develop an algorithm for isolating persistent pairs and show that through experimental data that they exist through time and through additional turbulence.

© 2011 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(010.1285) Atmospheric and oceanic optics : Atmospheric correction

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: August 12, 2011
Revised Manuscript: November 10, 2011
Manuscript Accepted: December 1, 2011
Published: January 4, 2012

Denis W. Oesch, Darryl J. Sanchez, and Carolyn M. Tewksbury-Christle, "Aggregate behavior of branch points - persistent pairs," Opt. Express 20, 1046-1059 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Fried and J. L. Vaughn, “Branch cuts in the phase function,” Appl. Opt.31, 2865–2882 (1992). [CrossRef] [PubMed]
  2. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A15, 2759–2768 (1998). [CrossRef]
  3. D. C. Ghiglia and M. D. Pritt, Two Dimensional Phase Unwrapping: Theory, Algorithms, and Software (John Wiley and Sons, 1998).
  4. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London A336, 165–190 (1974). [CrossRef]
  5. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt.40, 73–87 (1993). [CrossRef]
  6. I. Freund, “Optical vortices in gaussian random fields: Statistical probability densities,” J. Opt. Soc. Am.11, 1644–1652 (1994). [CrossRef]
  7. F. S. Roux, “Coupling of noncanonical optical vortices,” J. Opt. Soc. Am.21, 664–670 (2004). [CrossRef]
  8. M. Chen and L. Roux, “Evolution of the scintillation index and the optical vortex density in speckle fields after removal of the least-squares phase,” J. Opt. Soc. Am. A27, 2138–2143 (2008). [CrossRef]
  9. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992). [CrossRef] [PubMed]
  10. J. E. Curtis and D. G. Grier, “Structure of optical vorticies,” Phys. Rev.90, 133901 (2003).
  11. I. D. Maleev and G. A. Swartzlander, “Composite optical vorticies,” J. Opt. Soc. Am. B20, 1169–1176 (2003). [CrossRef]
  12. E. O. Le Bigot and W. J. Wild, “Theory of branch-point detection and its implementation,” J. Opt. Soc. Am.16, 1724–1729 (1999). [CrossRef]
  13. T. M. Venema and J. D. Schmidt, “Optical phase unwrapping in the presence of branch points,” Opt. Express16, 6985–6998 (2008). [CrossRef] [PubMed]
  14. D. J. Sanchez, D. W. Oesch, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - the creation and evolution of branch points,” Proc. SPIE7466, 0501–0512 (2009).
  15. D. W. Oesch, D. J. Sanchez, and C. L. Matson, “The aggregate behavior of branch points - measuring the number and velocity of atmospheric turbulence layers,” Opt. Express18, 22377–22392 (2010). [CrossRef] [PubMed]
  16. D. W. Oesch, D. J. Sanchez, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - branch point density as a characteristic of an atmospheric turbulence simulator,” Proc. SPIE7466, 0601–0610 (2009).
  17. D. W. Oesch, D. J. Sanchez, C. M. Tewksbury-Christle, and P. R. Kelly, “The aggregate behavior of branch points - altitude and strength of atmospheric turbulence layers,” Proc. SPIE7816, 0501–0513 (2010).
  18. J. Leach, S. Keen, M. J. Padget, C. Saunter, and G. D. Love, “Direct measurement of the skew angle of the poynting vector in a helically phased beam,” Opt. Express14, 11919–11924 (2006). [CrossRef] [PubMed]
  19. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett.22 (2010).
  20. K. Murphy, D. Burke, N. Devaney, and C. Dainty, “Experimental detection of optical vorticies with a shack-hartmann wavefront sensor,” Opt. Express18, 15448–15460 (2010). [CrossRef] [PubMed]
  21. D. J. Sanchez and D. W. Oesch, “The localization of angular momentum in optical waves propagating through atmospheric turbulence,” Opt. Express19, 25388–25396 (2011). [CrossRef]
  22. D. J. Sanchez and D. W. Oesch, “Orbital angular momentum in optical waves propagating through distributed atmospheric turbulence,” Opt. Express19, 24596–24068 (2011). [CrossRef] [PubMed]
  23. T. A. Rhoadarmer, “Development of a self-referencing interferometer wavefront sensor,” Proc. SPIE5553 (2004). [CrossRef]
  24. D. C. Johnston and B. M. Welsh, “Estimating the contribution of different parts of the atmosphere to optical wavefront aberration,” Comput. Electron. Eng.18, 467–483 (1992). [CrossRef]
  25. M. Schöck and E. J. Spillar, “Analyzing atmospheric turbulence with a shack-hartmann wavefront sensor,” Proc. SPIE3353, 1092–1099 (1998). [CrossRef]
  26. M. Schöck and E. J. Spillar, “Method for a quantitative investiagation of the frozen flow hypothesis,” J. Opt. Soc. Am. A17, 1650–1658 (2000). [CrossRef]
  27. L. Poyneer, M. van Dam, and J. P. Véran, “Experimental verification of the frozen flow atmospheric turbulence assumption with use of astronomical adaptive optics telemtry,” J. Opt. Soc. Am. A26, 833–846 (2009). [CrossRef]
  28. R. J. Sasiela, Electromagnetic Wave Propagation in Turbulence: Evaluation and Application of Mellin Transforms, 2nd ed. (SPIE Press, 2007).
  29. M. C. Roggeman and A. C. Koivunen, “Branch-point reconstruction in laser beam projection through turbulence with finite-degree-of-freedom phase-only wave-front correction,” J. Opt. Soc. Am.17, 53–62 (2000). [CrossRef]
  30. S. Mantravadi, T. A. Rhoadarmer, and R. S. Glas, “Simple laboratory system for generating well-controlled atmospheric-like turbulence,” Proc. SPIE5553, 290–300 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited