OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1084–1095

Refractive index measurement of acute rat brain tissue slices using optical coherence tomography

Jingjing Sun, Sung Jin Lee, Lei Wu, Malisa Sarntinoranont, and Huikai Xie  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1084-1095 (2012)
http://dx.doi.org/10.1364/OE.20.001084


View Full Text Article

Enhanced HTML    Acrobat PDF (1236 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical coherence tomography (OCT) system employing a microelectromechanical system (MEMS) mirror was used to measure the refractive index (RI) of anatomically different regions in acute brain tissue slices, in which viability was maintained. RI was measured in white-matter and grey-matter regions, including the cerebral cortex, putamen, hippocampus, thalamus and corpus callosum. The RI in the corpus callosum was found to be ~4% higher than the RIs in other regions. Changes in RI with tissue deformation were also measured in the cerebral cortex and corpus callosum under uniform compression (20-80% strain). For 80% strain, measured RIs increased nonlinearly by up to 70% and 90% in the cerebral cortex and corpus callosum respectively. Knowledge of RI in heterogeneous tissues can be used to correct distorted optical images caused by RI variations between different regions. Also deformation-dependent changes in RI can be applied to OCT elastography or to mechanical tests based on optical imaging such as indentation tests.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(290.3030) Scattering : Index measurements
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 3, 2011
Revised Manuscript: November 11, 2011
Manuscript Accepted: November 14, 2011
Published: January 4, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Jingjing Sun, Sung Jin Lee, Lei Wu, Malisa Sarntinoranont, and Huikai Xie, "Refractive index measurement of acute rat brain tissue slices using optical coherence tomography," Opt. Express 20, 1084-1095 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1084


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. N. Claxton, T. Fellers, and M. Davidson, “Laser scanning confocal microscopy,” Olympus, (2006). Available online at http://www.olympusconfocal.com/theory/LSCMIntro.pdf .
  3. M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett.77(10), 1551–1553 (2000). [CrossRef]
  4. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  5. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett.31(2), 241–243 (2006). [CrossRef] [PubMed]
  6. K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J. Biophotonics2(6-7), 389–397 (2009). [CrossRef] [PubMed]
  7. S. González, Aplicaciones clínicas de la microscopía confocal de reflectancia en el manejo de los tumores cutáneos,” Actas Dermosifiliogr.99(7), 528–531 (2008). [PubMed]
  8. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998). [CrossRef] [PubMed]
  9. S. J. Lee, J. Sun, J. J. Flint, S. Guo, H. K. Xie, M. A. King, and M. Sarntinoranont, “Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials,” J. Biomed. Mater. Res., Part B: Appl. Biomater.97B(1), 84–95 (2011). [CrossRef] [PubMed]
  10. T. Enatsu, H. Kitahara, K. Takano, and T. Nagashima, Terahertz spectroscopic imaging of paraffin-embedded liver cancer samples,” Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics. IRMMW-THz. Joint 32nd International Conference 557–558, 2–9 Sept. (2007).
  11. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol.42(5), 841–853 (1997). [CrossRef] [PubMed]
  12. H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol.48(16), 2713–2727 (2003). [CrossRef] [PubMed]
  13. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt.28(12), 2297–2303 (1989). [CrossRef] [PubMed]
  14. Q. W. Song, C. Ku, C. Zhang, and R. Michalak, “Modified critical angle method for measuring the refractive index of bio-optical materials and its application to bacteriorhodopsin,” J. Opt. Soc. Am. B12(5), 797–803 (1995). [CrossRef]
  15. H. Li and S. Xie, “Measurement method of the refractive index of biotissue by total internal reflection,” Appl. Opt.35(10), 1793–1795 (1996). [CrossRef] [PubMed]
  16. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett.20(21), 2258–2260 (1995). [CrossRef] [PubMed]
  17. J. Binding, J. Ben Arous, J. F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy,” Opt. Express19(6), 4833–4847 (2011). [CrossRef] [PubMed]
  18. N. Lue, J. Bewersdorf, M. D. Lessard, K. Badizadegan, R. R. Dasari, M. S. Feld, and G. Popescu, “Tissue refractometry using Hilbert phase microscopy,” Opt. Lett.32(24), 3522–3524 (2007). [CrossRef] [PubMed]
  19. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express13(23), 9361–9373 (2005). [CrossRef] [PubMed]
  20. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol.41(3), 369–382 (1996). [CrossRef] [PubMed]
  21. N. L. Dorward, O. Alberti, B. Velani, F. A. Gerritsen, W. F. J. Harkness, N. D. Kitchen, and D. G. T. Thomas, “Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation,” J. Neurosurg.88(4), 656–662 (1998). [CrossRef] [PubMed]
  22. D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery43(4), 749–758, discussion 758–760 (1998). [CrossRef] [PubMed]
  23. S. Cheng and L. E. Bilston, “Computational model of the cerebral ventricles in hydrocephalus,” J. Biomech. Eng.132(5), 054501 (2010). [CrossRef] [PubMed]
  24. J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express18(12), 12065–12075 (2010). [CrossRef] [PubMed]
  25. C. Nicholson and E. Syková, “Extracellular space structure revealed by diffusion analysis,” Trends Neurosci.21(5), 207–215 (1998). [CrossRef] [PubMed]
  26. T. Shigeno, M. Brock, S. Shigeno, E. Fritschka, and J. Cervós-Navarro, “The determination of brain water content: microgravimetry versus drying-weighing method,” J. Neurosurg.57(1), 99–107 (1982). [CrossRef] [PubMed]
  27. G. Xu, P. V. Bayly, and L. A. Taber, “Residual stress in the adult mouse brain,” Biomech. Model. Mechanobiol.8(4), 253–262 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited