OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1102–1112

Double common-path interferometer for flexible optical probe of optical coherence tomography

Jae Seok Park, Zhongping Chen, Myung Yung Jeong, and Chang-Seok Kim  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1102-1112 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1399 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A flexible curled optical cord is useful for a common-path optical coherence tomography (OCT) system because a bending-insensitive arbitrary length can be chosen for the endoscopic imaging probe. However, there has been a critical problem that the partial reflector needs to be placed in between the sample and the objective lens. It limits the structure design of optical probe and leads to a low transverse resolution OCT imaging. Instead of a conventional single common-path interferometer, we propose a novel double common-path interferometer configuration in order to generate an interference signal that is independent of the optical distance between the partial reflector and sample. Due to the limitless tuning of the objective distance, an objective lens with a high numerical aperture (NA) up to 0.85 can be successfully used for phase-sensitive optical coherence tomography to achieve a 3-dimensional profile image of a transverse resolution of 0.7 μm. The intensity and phase terms of the interference signal can be obtained simultaneously from a Fourier-domain mode locked swept laser source for fast data acquisition with a phase stability of 979 pm.

© 2012 OSA

OCIS Codes
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(140.3600) Lasers and laser optics : Lasers, tunable
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 28, 2011
Revised Manuscript: December 5, 2011
Manuscript Accepted: December 11, 2011
Published: January 4, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Jae Seok Park, Zhongping Chen, Myung Yung Jeong, and Chang-Seok Kim, "Double common-path interferometer for flexible optical probe of optical coherence tomography," Opt. Express 20, 1102-1112 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett.12(3), 158–160 (1987). [CrossRef] [PubMed]
  3. J. S. Park, M. Y. Jeong, C. H. Jung, C. H. Ouh, H. J. Kang, Y. G. Han, S. B. Lee, and C. S. Kim, “Flexible curled optical cord for bending-insensitive optical imaging delivery,” IEEE J. Sel. Top. Quantum Electron.16(4), 1031–1038 (2010). [CrossRef]
  4. U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Sel. Top. Quantum Electron.11(4), 799–805 (2005). [CrossRef]
  5. J. S. Park, M. Y. Jeong, and C. S. Kim, “Post-tuning of sample position in common-path swept source optical coherence tomography,” J. Opt. Soc. Korea15, (2011), to be published.
  6. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt.42(34), 6953–6958 (2003). [CrossRef] [PubMed]
  7. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, “Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon,” Opt. Express14(5), 1878–1887 (2006). [CrossRef] [PubMed]
  8. J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996). [CrossRef]
  9. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express15(10), 6210–6217 (2007). [CrossRef] [PubMed]
  10. J. H. Lee, E. J. Jung, and C. S. Kim, “Optical coherence tomography based on a continuous wave supercontinuum seeded by erbium doped fiber’s amplified spontaneous emission,” J. Opt. Soc. Korea14(1), 49–54 (2010). [CrossRef]
  11. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007). [CrossRef] [PubMed]
  12. J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett.34(21), 3442–3444 (2009). [CrossRef] [PubMed]
  13. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  14. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett.30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  15. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferometry,” Opt. Express13(3), 695–701 (2005). [CrossRef] [PubMed]
  16. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  17. S. H. Yun and B. E. Bouma, “Wavelength swept lasers,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008).
  18. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express12(20), 4822–4828 (2004). [CrossRef] [PubMed]
  19. D. Kim and Y. J. Cho, “3-Dsurface profile measurement using an acousto optic tunable filter based spectral phase shifting technique,” J. Opt. Soc. Korea.12(4), 281–287 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited