OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1129–1140

Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train

Masataka Nakazawa, Toshihiko Hirooka, Peng Ruan, and Pengyu Guan  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1129-1140 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2106 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel “orthogonal” TDM transmission scheme using an optical Nyquist pulse that enables us to achieve an ultrahigh data rate and spectral efficiency simultaneously without any intersymbol interference (ISI). We analytically describe the principle of orthogonal TDM, and demonstrate a 160 Gbaud optical orthogonal TDM transmission using 40 GHz optical Nyquist pulses. Tolerance to GVD and the dispersion slope is significantly improved by virtue of the orthogonality, reduced bandwidth, and minimum ISI.

© 2012 OSA

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 20, 2011
Revised Manuscript: December 6, 2011
Manuscript Accepted: December 8, 2011
Published: January 4, 2012

Masataka Nakazawa, Toshihiko Hirooka, Peng Ruan, and Pengyu Guan, "Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train," Opt. Express 20, 1129-1140 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. G. Weber and M. Nakazawa, Ultrahigh-Speed Optical Transmission Technology (Springer, 2007).
  2. C. Zhang, Y. Mori, M. Usui, K. Igarashi, K. Katoh, and K. Kikuchi, “Straight-line 1,073-km transmission of 640-Gbit/s dual-polarization QPSK signals on a single carrier,” in 35th European Conference on Optical Communication, 2009. ECOC '09 (2009), paper PD2.8.
  3. K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photon. Technol. Lett.22(8), 562–564 (2010). [CrossRef]
  4. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.
  5. H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electric. Eng.47, 617–644 (1928).
  6. K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express5(1), 6–10 (2008). [CrossRef]
  7. S. Okamoto, K. Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper PD2.3.
  8. X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s, 50-GHz spaced, PDM-32QAM transmission over 400 km and one 50 GHz-grid ROADM,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB3.
  9. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010). [CrossRef]
  10. K. Igarashi, Y. Mori, K. Katoh, and K. Kikuchi, “Bit-error rate performance of Nyquist wavelength-division multiplexed quadrature phase-shift keying optical signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMR6.
  11. J. Zhao and A. Ellis, “Electronic impairment mitigation in optically multiplexed multicarrier systems,” J. Lightwave Technol.29(3), 278–290 (2011). [CrossRef]
  12. R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9x138Gb/s pre-filtered PM-8QAM signals over 4,000 km of pure silica-core fiber,” J. Lightwave Technol.29(15), 2310–2318 (2011). [CrossRef]
  13. J. G. Proakis, Digital Communications, 5th ed. (McGraw Hill, 2007).
  14. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
  15. M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett.12(12), 1613–1615 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited