OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1172–1183

Electrical modulation of the complex refractive index in mid-infrared quantum cascade lasers

J. Teissier, S. Laurent, C. Manquest, C. Sirtori, A. Bousseksou, J. R. Coudevylle, R. Colombelli, G. Beaudoin, and I. Sagnes  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1172-1183 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have demonstrated an integrated three terminal device for the modulation of the complex refractive index of a distributed feedback quantum cascade laser (QCL). The device comprises an active region to produce optical gain vertically stacked with a control region made of asymmetric coupled quantum wells (ACQW). The optical mode, centered on the gain region, has a small overlap also with the control region. Owing to the three terminals an electrical bias can be applied independently on both regions: on the laser for producing optical gain and on the ACQW for tuning the energy of the intersubband transition. This allows the control of the optical losses at the laser frequency as the absorption peak associated to the intersubband transition can be electrically brought in and out the laser transition. By using this function a laser modulation depth of about 400 mW can be achieved by injecting less than 1 mW in the control region. This is four orders of magnitude less than the electrical power needed using direct current modulation and set the basis for the realisation of electrical to optical transducers.

© 2012 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 23, 2011
Revised Manuscript: August 30, 2011
Manuscript Accepted: September 26, 2011
Published: January 5, 2012

J. Teissier, S. Laurent, C. Manquest, C. Sirtori, A. Bousseksou, J. R. Coudevylle, R. Colombelli, G. Beaudoin, and I. Sagnes, "Electrical modulation of the complex refractive index in mid-infrared quantum cascade lasers," Opt. Express 20, 1172-1183 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett.93(2), 021103 (2008). [CrossRef]
  2. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010). [CrossRef]
  3. F. Capasso, C. Sirtori, and A. Y. Cho, “Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared,” IEEE J. Quantum Electron.30(5), 1313–1326 (1994). [CrossRef]
  4. J. Teissier, S. Laurent, C. Sirtori, H. Debrégeas-Sillard, F. Lelarge, F. Brillouet, and R. Colombelli, “Integrated quantum cascade laser-modulator using vertically coupled cavities,” Appl. Phys. Lett.94(21), 211105 (2009). [CrossRef]
  5. R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic active mode locking of quantum cascade lasers,” Appl. Phys. Lett.77(2), 169 (2000). [CrossRef]
  6. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared Quantum Cascade Lasers,” Opt. Express17(15), 12929–12943 (2009). [CrossRef] [PubMed]
  7. G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “High-speed all-optical modulation of a standard quantum cascade laser by front facet illumination,” Appl. Phys. Lett.95(10), 101104 (2009). [CrossRef]
  8. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Intersubband absorption of quantum cascade laser structures and its application to laser modulation,” Appl. Phys. Lett.92(21), 211108 (2008). [CrossRef]
  9. E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfrared quantum cascade laser by wavelength chirping spectroscopy,” Appl. Phys. Lett.94(8), 081110 (2009). [CrossRef]
  10. P. Holmström, P. Jänes, U. Ekenberg, and L. Thylén, “Efficient infrared electroabsorption with 1 V applied voltage swing using intersubband transitions,” Appl. Phys. Lett.93(19), 191101 (2008). [CrossRef]
  11. Band structure: The layer sequence of one period in nanometer, is 3.1/1.7/3.1/1.6/2.8/1.8/2.4/2.4/2.4/2.4/2.6/4.1/1.7/1.0/5.3/1.2/5.2/1.2/4.4/2.1 where In0.52Al0.48As layers are in bold and the underlined numbers correspond to the doped layers (1017 cm−3).
  12. M. Helm, Intersubband Transitions in Quantum Wells: Physics and Device Applications I, edited by H. C. Liu and F. Capasso, (Academic, 2000), vol. 62, pp. 1–99.
  13. K. L. Campman, H. Schmidt, A. Imamoglu, and A. C. Gossard, “Interface roughness and alloy‐disorder scattering contributions to intersubband transition linewidths,” Appl. Phys. Lett.69(17), 2554 (1996). [CrossRef]
  14. From top to buffer: GaInAs (5.1018cm−3, 300nm), InP (1.1017cm−3, 2.1µm), GaInAs(5.1016cm−3, 0.4µm), active region, GaInAs(5.1016cm−3, 0.4µm), InP(1.1017cm−3, 2µm), GaInAs (1.1017 cm−3, 500nm), 5 periods of coupled QW separated by 300Å of AlInAs, GaInAs (5.1016 cm−3, 1µm), InP (2.1017 cm−3, 2µm), buffer InP (1017 cm−3).
  15. E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett.93(13), 131108 (2008). [CrossRef]
  16. H. C. Liu, J. Li, M. Buchanan, and Z. R. Wasilewski, “High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique,” IEEE J. Quantum Electron.32(6), 1024–1028 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited