OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1392–1405

Plasmonic grating as a nonlinear converter-coupler

Nahid Talebi, Mahmoud Shahabadi, Worawut Khunsin, and Ralf Vogelgesang  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1392-1405 (2012)
http://dx.doi.org/10.1364/OE.20.001392


View Full Text Article

Enhanced HTML    Acrobat PDF (1647 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The paper introduces a wavelength converter composed of a metallic finite 2-dimensional particle grating on top of an optical waveguide. The particles sustain plasmonic resonances which will result in the near-field enhancement and therefore, high conversion efficiency. Due to near-field interaction of the grating field with the propagating modes of the waveguide, the generated third harmonic wave is phase-matched to a propagating mode of the waveguide, while the fundamental frequency component is not coupled into the output waveguide of the structure. The performance of this structure is numerically investigated using a full-wave transmission line method for the linear analysis and a three-dimensional finite-difference time-domain method for the nonlinear analysis.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(190.2620) Nonlinear optics : Harmonic generation and mixing
(240.6680) Optics at surfaces : Surface plasmons
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 12, 2011
Revised Manuscript: December 9, 2011
Manuscript Accepted: December 9, 2011
Published: January 9, 2012

Citation
Nahid Talebi, Mahmoud Shahabadi, Worawut Khunsin, and Ralf Vogelgesang, "Plasmonic grating as a nonlinear converter-coupler," Opt. Express 20, 1392-1405 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1392


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B68(3), 419–423 (1999). [CrossRef]
  2. T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett.93(24), 243901 (2004). [CrossRef] [PubMed]
  3. Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B82(15), 155107 (2010). [CrossRef]
  4. M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett.10(10), 4161–4165 (2010). [CrossRef] [PubMed]
  5. T. Uthayakumar, C. P. Jisha, K. Porsezian, and V. C. Kuriakose, “Switching dynamics of a two- dimensional nonlinear directional coupler in a photopolymer,” J. Opt.12(1), 015204 (2010). [CrossRef]
  6. S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008). [CrossRef] [PubMed]
  7. K. Dolgaleva and R. W. Boyd, “Laser gain media based on nanocomposite materials,” J. Opt. Soc. Am. B24(10), A19–A25 (2007). [CrossRef]
  8. R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal- dielectric photonic bandgap structures,” Opt. Lett.24(20), 1416–1418 (1999). [CrossRef] [PubMed]
  9. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33(11), 2038–2059 (1997). [CrossRef]
  10. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61(9), 1022–1024 (1992). [CrossRef]
  11. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett.23(9), 700–702 (1998). [CrossRef] [PubMed]
  12. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A13(5), 993–1005 (1996). [CrossRef]
  13. R. W. Day, S. S. Wang, and R. Magnusson, “Filter-response line shapes of resonant waveguide gratings,” J. Lightwave Technol.14(8), 1815–1824 (1996). [CrossRef]
  14. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” J. Opt. Soc. Am. A17(7), 1241–1249 (2000). [CrossRef] [PubMed]
  15. A. Selle, C. Kappel, M. A. Bader, G. Marowsky, K. Winkler, and U. Alexiev, “Picosecond-pulse-induced two-photon fluorescence enhancement in biological material by application of grating waveguide structures,” Opt. Lett.30(13), 1683–1685 (2005). [CrossRef] [PubMed]
  16. S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguide structures,” Opt. Lett.29(17), 1989–1991 (2004). [CrossRef] [PubMed]
  17. C. Kappel, A. Selle, M. A. Bader, and G. Marowsky, “Resonant double-grating waveguide structures as inverted Fabry-Perot interferometers,” J. Opt. Soc. Am. B21(6), 1127–1136 (2004). [CrossRef]
  18. A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett.97(22), 223704 (2010). [CrossRef] [PubMed]
  19. H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel Switzerland)10(11), 9630–9646 (2010). [CrossRef]
  20. J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum-Well Infrared detectors using a wave-guide with a grating coupler,” Appl. Phys. Lett.58(20), 2264–2266 (1991). [CrossRef]
  21. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A13(5), 993–1005 (1996). [CrossRef]
  22. N. Talebi and M. Shahabadi, “All-optical wavelength converter based on a heterogeneously integrated GaP on a silicon-on-insulator waveguide,” J. Opt. Soc. Am. B27(11), 2273–2278 (2010). [CrossRef]
  23. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80(19), 195415 (2009). [CrossRef]
  24. T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett.106(13), 133901 (2011). [CrossRef] [PubMed]
  25. Y. Dumeige, F. Raineri, A. Levenson, and X. Letartre, “Second-harmonic generation in one-dimensional photonic edge waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(6), 066617 (2003). [CrossRef] [PubMed]
  26. B. Maes, P. Bienstman, and R. Baets, “Modeling second-harmonic generation by use of mode expansion,” J. Opt. Soc. Am. B22(7), 1378–1383 (2005). [CrossRef]
  27. B. Maes, P. Bienstman, R. Baets, B. B. Hu, P. Sewell, and T. Benson, “Modeling comparison of second-harmonic generation in high-index-contrast devices,” Opt. Quantum Electron.40(1), 13–22 (2008). [CrossRef]
  28. C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Nonlinear finite-difference time-domain method for the simulation of anisotropic,χ(2)χ(3) ” J. Lightwave Technol.24(1), 624–634 (2006). [CrossRef]
  29. R. M. Joseph and A. Taflove, “FDTD Maxwell's equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antenn. Propag.45(3), 364–374 (1997). [CrossRef]
  30. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009). [CrossRef] [PubMed]
  31. T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Technique (CRC Press, 2009) 96–97.
  32. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys.125(16), 164705 (2006). [CrossRef] [PubMed]
  33. J. B. Schneider, “Understanding the finite-difference time-domain method” (2010), retrieved December 5th, 2011, www.eecs.wsu.edu/~schneidj/ufdtd .
  34. M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEEE P Sci.Meas. Tech.151(5), 327–334 (2004). [CrossRef]
  35. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  36. L. Gu, W. Sigle, C. T. Koch, B. Ogut, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets,” Phys. Rev. B83(19), 195433 (2011). [CrossRef]
  37. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  38. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles - surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B3(12), 1647–1655 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited