OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1436–1443

Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1436-1443 (2012)
http://dx.doi.org/10.1364/OE.20.001436


View Full Text Article

Enhanced HTML    Acrobat PDF (1270 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In laser-induced breakdown spectroscopy (LIBS), a pair of aluminum-plate walls were used to spatially confine the plasmas produced in air by a first laser pulse (KrF excimer laser) from chromium (Cr) targets with a second laser pulse (Nd:YAG laser at 532 nm, 360 mJ/pulse) introduced parallel to the sample surface to re-excite the plasmas. Optical emission enhancement was achieved by combing the spatial confinement and dual-pulse LIBS (DP-LIBS), and then optimized by adjusting the distance between the two walls and the interpulse delay time between both laser pulses. A significant enhancement factor of 168.6 for the emission intensity of the Cr lines was obtained at an excimer laser fluence of 5.6 J/cm2 using the combined spatial confinement and DP-LIBS, as compared with an enhancement factor of 106.1 was obtained with DP-LIBS only. The enhancement mechanisms based on shock wave theory and reheating in DP-LIBS are discussed.

© 2012 OSA

OCIS Codes
(350.5400) Other areas of optics : Plasmas
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Spectroscopy

History
Original Manuscript: November 3, 2011
Revised Manuscript: November 23, 2011
Manuscript Accepted: November 24, 2011
Published: January 9, 2012

Citation
L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, "Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation," Opt. Express 20, 1436-1443 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1436


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. J. Radziemski and D. A. Cremers, Laser Induced Plasma and Applications, (Marcel Dekker, New York, 1989).
  2. U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy,” Spectrochim. Acta, B At. Spectrosc.56(6), 839–850 (2001). [CrossRef]
  3. L. M. Cabalín and J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem.73(6), 1120–1125 (2001). [CrossRef]
  4. A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt.42(30), 6205–6209 (2003). [CrossRef] [PubMed]
  5. N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. M. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates,” Spectrochim. Acta, B At. Spectrosc.62B(12), 1528–1536 (2007). [CrossRef]
  6. F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express17(2), 419–425 (2009). [CrossRef] [PubMed]
  7. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta, B At. Spectrosc.56(6), 933–945 (2001). [CrossRef]
  8. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm,“ Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry,” Spectrochim. Acta, B At. Spectrosc.56(6), 637–649 (2001). [CrossRef]
  9. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett.91(8), 081501 (2007). [CrossRef]
  10. J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc.56(6), 685–693 (2001). [CrossRef]
  11. R. E. Neuhauser, U. Panne, and R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta392(1), 47–54 (1999). [CrossRef]
  12. B. J. Marquardt, B. M. Cullum, T. J. Shaw, and S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” Proc. SPIE3105, 203–212 (1997).
  13. C. M. Davies, H. H. Telle, and A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Anal. Bioanal. Chem.355(7-8), 895–899 (1996). [CrossRef] [PubMed]
  14. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc.50(2), 222–233 (1996). [CrossRef]
  15. D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc.55(6), 186A–205A (2001). [CrossRef]
  16. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis,” Appl. Opt.42(30), 6133–6137 (2003). [CrossRef] [PubMed]
  17. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc.54(3), 331–340 (2000). [CrossRef]
  18. J. Scaffidi, W. Pearman, J. C. Carter, and S. M. Angel, “Observations in collinear femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Spectrosc.60(1), 65–71 (2006). [CrossRef] [PubMed]
  19. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt.42(30), 6099–6106 (2003). [CrossRef] [PubMed]
  20. R. E. Russo, X. L. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICR-MS,” J. Anal. At. Spectrom.17(9), 1072–1075 (2002). [CrossRef]
  21. X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, “Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt.48(13), 2551–2558 (2009). [CrossRef] [PubMed]
  22. X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express19(11), 10997–11006 (2011). [CrossRef] [PubMed]
  23. A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602–604 (2009). [CrossRef]
  24. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010). [CrossRef]
  25. L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett.98(13), 131501 (2011). [CrossRef]
  26. S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys.104(11), 113520 (2008). [CrossRef]
  27. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc.45(9), 1419–1423 (1991). [CrossRef]
  28. A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser-induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta, B At. Spectrosc.62(8), 721–738 (2007). [CrossRef]
  29. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys.102(9), 093301 (2007). [CrossRef]
  30. L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express19(15), 14067–14075 (2011). [CrossRef] [PubMed]
  31. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO(2) laser pulse,” Opt. Express15(20), 12905–12915 (2007). [CrossRef] [PubMed]
  32. F. F. Chen, Introduction to Plasma Physics, (Plenum, New York, 1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited