OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1465–1474

Diffraction pattern study for cell type identification

M. Mihailescu and J. Costescu  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1465-1474 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3908 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents our study regarding diffracted intensity distribution in Fresnel and Fraunhofer approximation from different cell types. Starting from experimental information obtained through digital holographic microscopy, we modeled the cell shapes as oblate spheroids and built their phase-only transmission functions. In Fresnel approximation, the experimental and numerical diffraction patterns from mature and immature red blood cells have complementary central intensity values at different distances. The Fraunhofer diffraction patterns of deformed red blood cells were processed in the reciprocal space where, the isoamplitude curves were formed independently for each degree of cell deformation present within every sample; the values on each separate isoamplitude curve are proportional with the percentage of the respective cell type within the sample.

© 2012 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1940) Diffraction and gratings : Diffraction
(170.0110) Medical optics and biotechnology : Imaging systems
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 14, 2011
Revised Manuscript: December 18, 2011
Manuscript Accepted: December 21, 2011
Published: January 9, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

M. Mihailescu and J. Costescu, "Diffraction pattern study for cell type identification," Opt. Express 20, 1465-1474 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Leung and M. K. Cheung, “Decrease in light diffraction intensity of contracting muscle fibres,” Eur. Biophys. J.15(6), 359–368 (1988). [CrossRef] [PubMed]
  2. A. F. Leung, “Laser diffraction of single intact cardiac muscle cells at rest,” J. Muscle Res. Cell Motil.3(4), 399–418 (1982). [CrossRef] [PubMed]
  3. C. L. Sundell, Y. E. Goldman, and L. D. Peachey, “Fine structure in near-field and far-field laser diffraction patterns from skeletal muscle fibers,” Biophys. J.49(2), 521–530 (1986). [CrossRef] [PubMed]
  4. M. Wussling, W. Schenk, and B. Nilius, “A study of dynamic properties in isolated myocardial cells by the laser diffraction method,” J. Mol. Cell. Cardiol.19(9), 897–907 (1987). [CrossRef] [PubMed]
  5. C. D. Boothby, J. Daniel, S. Adam, and J. E. D. Dyson, “Use of a laser diffraction particle sizer for the measurement of mean diameter of multicellular tumor spheroids,” In Vitro Cell. Dev. Biol.25(10), 946–950 (1989). [CrossRef] [PubMed]
  6. W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem.26(10), 1435–1442 (1980). [PubMed]
  7. D. Miller, W. J. Plaus, and R. P. Zelt, “Clinical tear analysis using laser diffraction,” Acta Ophthalmol. (Copenh.)58(4), 588–596 (1980). [CrossRef] [PubMed]
  8. http://www.mechatronics.nl/products/lorrca/index.htm .
  9. S. Shin, Y. Ku, M. S. Park, and J. S. Suh, “Slit-flow ektacytometry: laser diffraction in a slit rheometer,” Cytometry, Part B65B(1), 6–13 (2005). [CrossRef] [PubMed]
  10. Y. K. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express14(18), 8263–8268 (2006). [CrossRef] [PubMed]
  11. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt.47(19), D176–D182 (2008), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-19-D176 . [CrossRef] [PubMed]
  12. I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification with computational 3D Holographic Microscopy,” Opt. Photonics News22(6), 18–23 (2011). [CrossRef]
  13. G. J. Streekstra, A. G. Hoekstra, E.-J. Nijhof, and R. M. Heethaar, “Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction,” Appl. Opt.32(13), 2266–2272 (1993), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-13-2266 . [CrossRef] [PubMed]
  14. G. J. Streekstra, J. G. G. Dobbe, and A. G. Hoekstra, “Quantification of the fraction poorly deformable red blood cells using ektacytometry,” Opt. Express18(13), 14173–14182 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-14173 . [CrossRef] [PubMed]
  15. M. Mihailescu, M. Scarlat, A. Gheorghiu, J. Costescu, M. Kusko, I. A. Paun, and E. Scarlat, “Automated imaging, identification, and counting of similar cells from digital hologram reconstructions,” Appl. Opt.50(20), 3589–3597 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=ao-50-20-3589 . [CrossRef] [PubMed]
  16. L. M. Lowenstein, “The Mammalian Reticulocyte,” in International Review of Cytology, G. H. Bourne and J. F. Danielli, eds. (Academic Press Inc., London, 1959), Vol. 8.
  17. M. Mir, H. Ding, Z. Wang, J. Reedy, K. Tangella, and G. Popescu, “Blood screening using diffraction phase cytometry,” J. Biomed. Opt.15(2), 027016 (2010). [CrossRef] [PubMed]
  18. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry, Part A73A(10), 895–903 (2008). [CrossRef] [PubMed]
  19. W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem.26(10), 1435–1442 (1980). [PubMed]
  20. F. M. Gaffney, “Experimental Haemolytic Anaemia with Particular Reference to the Corpuscular Haemoglobin Concentrations of the Erythrocytes,” Br. J. Haematol.3(3), 311–319 (1957). [CrossRef]
  21. G. d’Onofrio, R. Chirillo, G. Zini, G. Caenaro, M. Tommasi, and G. Micciulli, “Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia,” Blood85(3), 818–823 (1995). [PubMed]
  22. G. J. Streekstra, A. G. Hoekstra, and R. M. Heethaar, “Anomalous diffraction by arbitrarily oriented ellipsoids: applications in ektacytometry,” Appl. Opt.33(31), 7288–7296 (1994), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-31-7288 . [CrossRef] [PubMed]
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Book Co., 1968).
  24. M. Mihailescu, “Natural quasy-periodic binary structure with focusing property in near field diffraction pattern,” Opt. Express18(12), 12526–12536 (2010). [CrossRef] [PubMed]
  25. S. Shin, Y. Ku, M.-S. Park, and J.-S. Suh, “Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer,” Korea-Aust. Rheol. J.16, 85–90 (2004).
  26. S. Shin, Y. H. Ku, M. S. Park, S. Y. Moon, J. H. Jang, and J. S. Suh, “Laser-diffraction slit rheometer to measure red blood cell deformability,” Rev. Sci. Instrum.75(2), 559–561 (2004). [CrossRef]
  27. R. Bayer, S. Caglayan, R. Hofmann, and D. Ostuni, “Laser diffraction of RBC: the method and its pitfalls,” Proc. SPIE2100, 248–255 (1994), doi:. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (175 KB)     
» Media 2: MOV (137 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited