OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1503–1511

A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics

Benjamin A. Mazin, Bruce Bumble, Seth R. Meeker, Kieran O’Brien, Sean McHugh, and Eric Langman  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1503-1511 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2190 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microwave Kinetic Inductance Detectors, or MKIDs, have proven to be a powerful cryogenic detector technology due to their sensitivity and the ease with which they can be multiplexed into large arrays. A MKID is an energy sensor based on a photon-variable superconducting inductance in a lithographed microresonator, and is capable of functioning as a photon detector across the electromagnetic spectrum as well as a particle detector. Here we describe the first successful effort to create a photon-counting, energy-resolving ultraviolet, optical, and near infrared MKID focal plane array. These new Optical Lumped Element (OLE) MKID arrays have significant advantages over semiconductor detectors like charge coupled devices (CCDs). They can count individual photons with essentially no false counts and determine the energy and arrival time of every photon with good quantum efficiency. Their physical pixel size and maximum count rate is well matched with large telescopes. These capabilities enable powerful new astrophysical instruments usable from the ground and space. MKIDs could eventually supplant semiconductor detectors for most astronomical instrumentation, and will be useful for other disciplines such as quantum optics and biological imaging.

© 2012 OSA

OCIS Codes
(040.1240) Detectors : Arrays
(350.1270) Other areas of optics : Astronomy and astrophysics

ToC Category:

Original Manuscript: September 16, 2011
Revised Manuscript: November 30, 2011
Manuscript Accepted: December 16, 2011
Published: January 10, 2012

Benjamin A. Mazin, Bruce Bumble, Seth R. Meeker, Kieran O’Brien, Sean McHugh, and Eric Langman, "A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics," Opt. Express 20, 1503-1511 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bintley, M. J. Macintosh, W. S. Holland, P. Friberg, C. Walther, D. Atkinson, D. Kelly, X. Gao, P. A. R. Ade, W. Grainger, J. House, L. Moncelsi, M. I. Hollister, A. Woodcraft, C. Dunare, W. Parkes, A. J. Walton, K. D. Irwin, G. C. Hilton, M. Niemack, C. D. Reintsema, M. Amiri, B. Burger, M. Halpern, M. Hasselfield, J. Hill, J. B. Kycia, C. G. A. Mugford, and L. Persaud, “Characterising the scuba-2 superconducting bolometer arrays,” Proc. SPIE7741, 774106 (2010).
  2. M. D. Niemack, Y. Zhao, E. Wollack, R. Thornton, E. R. Switzer, D. S. Swetz, S. T. Staggs, L. Page, O. Stryzak, H. Moseley, T. A. Marriage, M. Limon, J. M. Lau, J. Klein, M. Kaul, N. Jarosik, K. D. Irwin, A. D. Hincks, G. C. Hilton, M. Halpern, J. W. Fowler, R. P. Fisher, R. Dünner, W. B. Doriese, S. R. Dicker, M. J. Devlin, J. Chervenak, B. Burger, E. S. Battistelli, J. Appel, M. Amiri, C. Allen, and A. M. Aboobaker, “A kilopixel array of tes bolometers for ACT: development, testing, and first light,” J. Low Temp. Phys. 151, 690–696 (2008). [CrossRef]
  3. J. E. Carlstrom, P. A. R. Ade, K. A. Aird, B. A. Benson, L. E. Bleem, S. Busetti, C. L. Chang, E. Chauvin, H.-M. Cho, T. M. Crawford, A. T. Crites, M. A. Dobbs, N. W. Halverson, S. Heimsath, W. L. Holzapfel, J. D. Hrubes, M. Joy, R. Keisler, T. M. Lanting, A. T. Lee, E. M. Leitch, J. Leong, W. Lu, M. Lueker, D. Luong-van, J. J. McMahon, J. Mehl, S. S. Meyer, J. J. Mohr, T. E. Montroy, S. Padin, T. Plagge, C. Pryke, J. E. Ruhl, K. K. Schaffer, D. Schwan, E. Shirokoff, H. G. Spieler, Z. Staniszewski, A. A. Stark, C. Tucker, K. Vanderlinde, J. D. Vieira, and R. Williamson, “The 10 meter south pole telescope,” PUbl. Astron. Soc. Pac. 123, 568–581 (2011). [CrossRef]
  4. R. L. Kelley, S. R. Bandler, W. B. Doriese, Y. Ezoe, R. Fujimoto, L. Gottardi, R. den Hartog, J.-W. den Herder, H. Hoevers, K. Irwin, Y. Ishisaki, C. A. Kilbourne, P. de Korte, J. van der Kuur, K. Mitsuda, T. Ohashi, L. Piro, F. S. Porter, K. Sato, K. Shinozaki, P. Shirron, S. J. Smith, Y. Takei, P. Whitehouse, and N. Y. Yamasaki, “The X-ray microcalorimeter spectrometer for the international X-ray observatory,” in Proc. of the AIP Conference 1185, 757–760 (2009). [CrossRef]
  5. W. B. Doriese, J. N. Ullom, J. A. Beall, W. D. Duncan, L. Ferreira, G. C. Hilton, R. D. Horansky, K. D. Irwin, J. A. B. Mates, C. D. Reintsema, L. R. Vale, Y. Xu, B. L. Zink, M. W. Rabin, A. S. Hoover, C. R. Rudy, and D. T. Vo, “14-pixel, multiplexed array of gamma-ray microcalorimeters with 47 eV energy resolution at 103 keV,” Appl. Phys. Lett. 90, 193508 (2007). [CrossRef]
  6. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011). [CrossRef] [PubMed]
  7. D. D. E. Martin, P. Verhoeve, A. Peacock, A. G. Kozorezov, J. K. Wigmore, H. Rogalla, and R. Venn, “Resolution limitation due to phonon losses in superconducting tunnel junctions,” Appl. Phys. Lett. 88, 123510 (2006). [CrossRef]
  8. R. A. Hijmering, P. Verhoeve, D. D. E. Martin, I. Jerjen, A. G. Kozorezov, and R. Venn, “Direct position resolution measurement with droids at optical wavelengths,” J. Low Temp. Phys. 151, 298–303 (2008). [CrossRef]
  9. R. W. Romani, A. J. Miller, B. Cabrera, S. W. Nam, and J. M. Martinis, “Phase-resolved crab studies with a cryogenic transition-edge sensor spectrophotometer,” Astrophys. J. 563, 221–228 (2001). [CrossRef]
  10. J. Burney, T. J. Bay, J. Barral, P. L. Brink, B. Cabrera, J. P. Castle, A. J. Miller, S. Nam, D. Rosenberg, R. W. Romani, and A. Tomada, “Transition-edge sensor arrays for uv-optical-ir astrophysics,” Nucl. Instrum. Methods Phys. Res. A 559, 525–527 (2006). [CrossRef]
  11. M. D. Niemack, J. Beyer, H. M. Cho, W. B. Doriese, G. C. Hilton, K. D. Irwin, C. D. Reintsema, D. R. Schmidt, J. N. Ullom, and L. R. Vale, “Code-division squid multiplexing,” Appl. Phys. Lett. 96, 163509 (2010). [CrossRef]
  12. P. Day, H. Leduc, B. Mazin, A. Vayonakis, and J. Zmuidzinas, “A superconducting detector suitable for use in large arrays,” Nature 425, 817–821 (2003). [CrossRef] [PubMed]
  13. J. A. Schlaerth, N. G. Czakon, P. K. Day, T. P. Downes, R. Duan, J. Gao, J. Glenn, S. R. Golwala, M. I. Hollister, H. G. Leduc, B. A. Mazin, P. R. Maloney, O. Noroozian, H. T. Nguyen, J. Sayers, S. Siegel, J. E. Vaillancourt, A. Vayonakis, P. R. Wilson, and J. Zmuidzinas, “MKID multicolor array status and results from Democam,” Proc. SPIE 7741, 774109 (2010). [CrossRef]
  14. M. Roesch, A. Bideaud, A. Benoit, A. Cruciani, F. X. Désert, S. Doyle, S. Leclercq, F. Mattiocco, K. F. Schuster, L. Swenson, and A. Monfardini, “Characterization of lumped element kinetic inductance detectors for mm-wave detection,” Proc. SPIE7741, 77410N (2010).
  15. B. Mazin, P. Day, K. Irwin, C. Reintsema, and J. Zmuidzinas, “Digital readouts for large microwave low-temperature detector arrays,” Nucl. Instrum. Methods Phys. Res. A 559, 799–801 (2006). [CrossRef]
  16. P. Verhoeve, D. D. E. Martin, R. A. Hijmering, J. Verveer, A. van Dordrecht, G. Sirbi, T. Oosterbroek, and A. Peacock, “S-Cam 3: optical astronomy with a stj-based imaging spectrophotometer,” Nucl. Instrum. Methods Phys. Res. A 559, 598–601 (2006). [CrossRef]
  17. G. E. Smith, “The invention and early history of the CCD,” App. Phys. Lett. 109, 102421 (2011).
  18. D. C. Mattis and J. Bardeen, “Theory of the anomalous skin effect in normal and superconducting metals,” Phys. Rev. 111, 412–417 (1958). [CrossRef]
  19. S. Doyle, P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe, “Lumped element kinetic inductance detectors,” J. Low Temp. Phys. 151, 530–536 (2008). [CrossRef]
  20. H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, and J. Zmuidzinas, “Titanium nitride films for ultrasensitive microresonator detectors,” Appl. Phys. Lett. 97, 102509 (2010). [CrossRef]
  21. O. Noroozian, P. Day, B. H. Eom, H. LeDuc, and J. Zmuidzinas, “Crosstalk reduction for superconducting microwave resonator arrays,” IEEE Trans. Microwave Theory Tech., submitted (2011).
  22. J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators,” Appl. Phys. Lett. 92, 152505 (2008). [CrossRef]
  23. B. A. Mazin, “Microwave kinetic inductance detectors,”, Ph.D. thesis, California Institute of Technology (2004).
  24. A. G. Kozorezov, J. K. Wigmore, D. Martin, P. Verhoeve, and A. Peacock, “Electron energy down-conversion in thin superconducting films,” Phys. Rev. B 75, 094513 (2007). [CrossRef]
  25. U. Fano, “Ionization yield of radiations 2: The fluctuations of the number of ions,” Phys. Rev. 72, 26–29 (1947). [CrossRef]
  26. J. R. Crepp, L. Pueyo, D. Brenner, B. R. Oppenheimer, N. Zimmerman, S. Hinkley, I. Parry, D. King, G. Vasisht, C. Beichman, L. Hillenbrand, R. Dekany, M. Shao, R. Burruss, L. C. Roberts, A. Bouchez, J. Roberts, and R. Soummer, “Speckle suppression with the project 1640 integral field spectrograph,” Astrophys. J. 729, 132 (2011). [CrossRef]
  27. R. J. Bouwens, G. D. Illingworth, M. Franx, and H. Ford, “z 7–10 galaxies in the HUDF and GOODS fields: uv luminosity functions,” Astrophys. J. 686, 230 (2008). [CrossRef]
  28. L. Ma, S. Nam, H. Xu, B. Baek, T. Chang, O. Slattery, A. Mink, and X. Tang, “1310 nm differential-phase-shift qkd system using superconducting single-photon detectors,” New J. Phys. 11, 045020 (2009). [CrossRef]
  29. I. Tinoco and R. L. Gonzalez, “Biological mechanisms, one molecule at a time,” Genes Dev. 25, 1205–1231 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited