OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1512–1529

New perspective on passively quenched single photon avalanche diodes: effect of feedback on impact ionization

David A. Ramirez, Majeed M. Hayat, Graham J. Rees, Xudong Jiang, and Mark A. Itzler  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1512-1529 (2012)
http://dx.doi.org/10.1364/OE.20.001512


View Full Text Article

Enhanced HTML    Acrobat PDF (1486 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single-photon avalanche diodes (SPADs) are primary devices in photon counting systems used in quantum cryptography, time resolved spectroscopy and photon counting optical communication. SPADs convert each photo-generated electron hole pair to a measurable current via an avalanche of impact ionizations. In this paper, a stochastically self-regulating avalanche model for passively quenched SPADs is presented. The model predicts, in qualitative agreement with experiments, three important phenomena that traditional models are unable to predict. These are: (1) an oscillatory behavior of the persistent avalanche current; (2) an exponential (memoryless) decay of the probability density function of the stochastic quenching time of the persistent avalanche current; and (3) a fast collapse of the avalanche current, under strong feedback conditions, preventing the development of a persistent avalanche current. The model specifically captures the effect of the load’s feedback on the stochastic avalanche multiplication, an effect believed to be key in breaking today’s counting rate barrier in the 1.55–μm detection window.

© 2012 OSA

OCIS Codes
(230.5160) Optical devices : Photodetectors
(250.0250) Optoelectronics : Optoelectronics
(250.1345) Optoelectronics : Avalanche photodiodes (APDs)

ToC Category:
Detectors

History
Original Manuscript: October 11, 2011
Revised Manuscript: December 6, 2011
Manuscript Accepted: December 19, 2011
Published: January 10, 2012

Citation
David A. Ramirez, Majeed M. Hayat, Graham J. Rees, Xudong Jiang, and Mark A. Itzler, "New perspective on passively quenched single photon avalanche diodes: effect of feedback on impact ionization," Opt. Express 20, 1512-1529 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1512


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. P. Risk and D. S. Bethune, “Quantum cryptography,” Opt. Photonics News13, 26–32 (2002). [CrossRef]
  2. D. M. Boroson, R. S. Bondurant, and D. V. Murphy, “LDORA: A novel laser communications receiver array architecture,” Proc. of SPIE5338, 56–64 (2004). [CrossRef]
  3. B. F. Levine, C. G. Bethea, and J. C. Campbell, “1.52 μm room temperature photon counting optical time domain reflectometer,” Electron. Lett.21, 194–196 (1985). [CrossRef]
  4. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J.13, 335–350 (2002).
  5. M. A. Albota, B. A. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. OBrien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J.13, 351–367 (2002).
  6. R. H. Haitz, “Model for the electrical behavior of a microplasma,” J. Appl. Phys.35, 1370–1376 (1964). [CrossRef]
  7. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.35, 1956–1976 (1996). [CrossRef] [PubMed]
  8. M. A. Itzler, X. Jiang, B. Nyman, and K. Slomkowski, “InP-based Negative Feedback Avalanche Diodes,” Proc. of SPIE7222, 72221K (2009). [CrossRef]
  9. K. Zhao, S. You, J. Cheng, and Y. Lo, “Self-quenching and self-recovering InGaAs/InAlAs single photon avalanche detector,” Appl. Phys. Lett.93, 153504 (2008). [CrossRef]
  10. M. M. Hayat and B. E. A. Saleh, “Statistical properties of the impulse response function of double-carrier multiplication avalanche photodiodes including the effect of dead space,” J. Lightwave Technol.10, 1415–1425 (1992). [CrossRef]
  11. M. M. Hayat and G. Dong, “A new approach for computing the bandwidth statistics of avalanche photodiodes,” IEEE Trans. Electron Devices47, 1273–1279 (2000). [CrossRef]
  12. M. M. Hayat, G. J. Rees, D. A. Ramirez, and M. A. Itzler, “Statistics of self-quenching time in single photon avalanche diodes,” The 21st Annual Meeting of The IEEE Lasers and Electro-Optics Society pp. 203–231 (2008).
  13. M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, “Progress in self-quenching InP-based single photon detectors,” Proc. of SPIE7608, 760829 (2010). [CrossRef]
  14. M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications,” J. Mod. Opt.54, 283–304 (2007). [CrossRef]
  15. M. M. Hayat, M. A. Itzler, D. A. Ramirez, and G. J. Rees, “Model for Passive Quenching of SPADs,” Proc. of SPIE7608, 76082B–76082B–8 (2010). [CrossRef]
  16. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  17. M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt.58, 174–200 (2011). [CrossRef]
  18. R. J. McIntyre, “Multiplication noise in uniform avalanche photodiodes,” IEEE Trans. Electron devicesED. 13, 164–168 (1966). [CrossRef]
  19. L. J. J. Tan, J. S. Ng, C. H. Tan, and J. P. R. David, “Avalanche noise characteristics in submicron InP diodes,” IEEE J. Quantum Electron.44, 378–382 (2008). [CrossRef]
  20. C. Groves, C. H. Tan, J. P. R. David, G. J. Rees, and M. M. Hayat, “Exponential time response in analogue and Geiger mode avalanche photodiodes,” IEEE Trans. Electron Devices52, 1527–1534 (2005). [CrossRef]
  21. D. Shushakov and V. Shubin, “New solid state photomultiplier,” Proc. of SPIE2397, 544–554 (1995). [CrossRef]
  22. D. Shushakov and V. Shubin, “New avalanche device with an ability of a few-photon light pulse detection in analog mode,” Proc. of SPIE2699, 173–183 (1996). [CrossRef]
  23. J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, “A general method for estimating the duration of avalanche multiplication,” J. Lightwave Technol.10, 1067–1071 (2002).
  24. E. T. Whittaker and G. N. Watson, A course on Modern Analysis (Cambridge Mathematical Library, 1996).
  25. K. B. Athreya and P. Ney, Branching Processes (Berlin-Germany: Springer-Verlag, 1972).
  26. R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys.38, 3705–3714 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited