OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1545–1551

Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide

John E. McCarthy, Henry T. Bookey, Nicholas D. Psaila, Robert R. Thomson, and Ajoy K. Kar  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1545-1551 (2012)
http://dx.doi.org/10.1364/OE.20.001545


View Full Text Article

Enhanced HTML    Acrobat PDF (1120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the successful fabrication of mid-infrared waveguides written in a gallium lanthanum sulphide (GLS) substrate via the ultrafast laser inscription technique. Single mode guiding at 2485 nm and 3850 nm is observed. Spectral broadening spanning 1500 nm (−15dB points) is demonstrated under 3850 nm excitation.

© 2012 OSA

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

History
Original Manuscript: November 7, 2011
Revised Manuscript: December 21, 2011
Manuscript Accepted: December 22, 2011
Published: January 10, 2012

Citation
John E. McCarthy, Henry T. Bookey, Nicholas D. Psaila, Robert R. Thomson, and Ajoy K. Kar, "Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide," Opt. Express 20, 1545-1551 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008). [CrossRef]
  2. P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem.119(2), 355–362 (2006). [CrossRef]
  3. P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express15(19), 12529–12538 (2007). [CrossRef] [PubMed]
  4. M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan,” Opt. Express13(10), 3594–3599 (2005). [CrossRef] [PubMed]
  5. R. Grille, G. Martin, L. Labadie, B. Arezki, P. Kern, T. Lewi, A. Tsun, and A. Katzir, “Single mode mid-infrared silver halide asymmetric flat waveguide obtained from crystal extrusion,” Opt. Express17(15), 12516–12522 (2009). [CrossRef] [PubMed]
  6. L. Le Neindre, F. Smektala, K. Le Foulgoc, X. H. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids242(2-3), 99–103 (1998). [CrossRef]
  7. C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18(25), 26744–26753 (2010). [CrossRef] [PubMed]
  8. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003). [CrossRef]
  9. Z. G. Lian, W. J. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett.34(8), 1234–1236 (2009). [CrossRef] [PubMed]
  10. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2Se3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010). [CrossRef] [PubMed]
  11. M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin Chalcogenide films prepared by pulsed laser deposition – new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids352(6-7), 544–561 (2006). [CrossRef]
  12. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  13. Y. Cheng, K. Sugioka, and K. Midorikawa, “Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application,” Opt. Express13(18), 7225–7232 (2005). [CrossRef] [PubMed]
  14. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express15(18), 11691–11697 (2007). [CrossRef] [PubMed]
  15. H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett.19(12), 892–894 (2007). [CrossRef]
  16. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008). [CrossRef] [PubMed]
  17. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express19(6), 5698–5705 (2011). [CrossRef] [PubMed]
  18. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40(19), 1170–1172 (2004). [CrossRef]
  19. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express15(24), 15776–15781 (2007). [CrossRef] [PubMed]
  20. M. A. Hughes, W. Yang, and D. W. Hewak, “Spectral broadening in femtosecond laser written waveguides in Chalcogenide glass,” J. Opt. Soc. Am. B26(7), 1370–1378 (2009). [CrossRef]
  21. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  22. J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se- based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931–6933 (2004). [CrossRef]
  23. X. Orignac, D. Barbier, X. Min Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-Gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 µm,” Opt. Mater.12(1), 1–18 (1999). [CrossRef]
  24. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express10(20), 1083–1098 (2002). [PubMed]
  25. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  26. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express14(6), 2151–2157 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited