OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1561–1574

Surface plasmon drag effect in a dielectrically modulated metallic thin film

Hiroyuki Kurosawa and Teruya Ishihara  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1561-1574 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have experimentally and numerically investigated photo-induced voltage (PIV) effect across a Au film with a dielectric grating. We observed strongly enhanced voltage when surface plasmon polariton (SPP) is excited. It was found that electrons in the Au film are driven to the propagation direction of SPP. We have numerically shown that dissipative force called as scattering force well elucidates the experimental result for the first time. It is also clarified that this effect can be attributed to the momentum transfer from SPP to free carriers in the Au film. Thus the effect we observed can be called as surface plasmon drag effect in analogy with the photon drag effect.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: November 8, 2011
Revised Manuscript: December 8, 2011
Manuscript Accepted: December 19, 2011
Published: January 10, 2012

Hiroyuki Kurosawa and Teruya Ishihara, "Surface plasmon drag effect in a dielectrically modulated metallic thin film," Opt. Express 20, 1561-1574 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Gibson, M. F. Kimmit, and A. C. Walker, “Photon drag in Germanium,” Appl. Phys. Lett. 17, 75–77 (1970). [CrossRef]
  2. A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metals,” Appl. Phys. Lett. 87, 091118 (2005). [CrossRef]
  3. N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011). [CrossRef]
  4. T. Hatano, B. Nishikawa, M. Iwanaga, and T. Ishihara, “Optical rectification effect in 1D metallic photonic crystal slabs with asymmetric unit cell,” Opt. Express 16, 8236–8241 (2008). [CrossRef] [PubMed]
  5. A. English, C. Cheng, L. Lowe, M. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).
  6. J. E. Goff and W. L. Shaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997). [CrossRef]
  7. V. L. Gurevich, R. Laoho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. 69, 180–183 (1992). [CrossRef] [PubMed]
  8. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000). [CrossRef]
  9. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973). [CrossRef]
  10. T. Hatano, T. Ishihara, S. G. Tikhoodev, and N. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009). [CrossRef] [PubMed]
  11. M. Durach, A. Rusina, and M. I. Stockmann, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103, 186801 (2009). [CrossRef] [PubMed]
  12. V. D. Barger and M. G. Olsson, Classical Electricity and Magnetism: A Contemporary Perspective (Allyn & Bacon, 1987).
  13. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasi guided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002). [CrossRef]
  14. L. Li, “Formulation of comparison of two recursive matrix algorithms for modeling of layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  15. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  16. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  17. M. Onoda and T. Ochiai, “Designing spinning Bloch states in 2D photonic crystals for stringing nanoparticles,” Phys. Rev. Lett. 103, 033903 (2009). [CrossRef] [PubMed]
  18. V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B 48, 8307–8316 (1993). [CrossRef]
  19. W. L. Barnes, T. W. Preist, S. C. Kitoson, J.R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995). [CrossRef]
  20. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008). [CrossRef]
  21. A. V. Kats, S. Shavel’ev, V. A. Yampol’skii, and F. Nori, “Left-handed interfaces for electromagnetic surface waves,” Phys. Rev. Lett. 98, 073901 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited