OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1597–1607

Enhancing long-term stability of the optoelectronic oscillator with a probe-injected fiber delay monitoring mechanism

Wen-Hung Tseng and Kai-Ming Feng  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1597-1607 (2012)
http://dx.doi.org/10.1364/OE.20.001597


View Full Text Article

Enhanced HTML    Acrobat PDF (1266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optoelectronic oscillators (OEOs), based on optical fiber loops to act as a high-Q cavity, are capable of generating stable radio-frequencies (RF). The long-term frequency stability of the OEO is then limited by the cavity variation that is mainly induced by temperature sensitivity of the optical fiber. In order to actively stabilize the OEO cavity, we employ the technique of RF transfer over optical fibers. We propose and experimentally demonstrate a dual-loop-OEO scheme to enhance the long-term stability with an injected probe signal to monitor the phase variation in the fiber loops. The experimental results show that the resulting spread-spectrum signal is useful in monitoring the fiber delay without observable interference. The relationships between the measured frequency and the monitored delay are theoretically and numerically discussed. We also estimate the long-term stability of the proposed OEO scheme with the cavity phase correction. The corrected result shows the long-term frequency stability of the proposed OEO is within 8.4×10−8 at one day.

© 2012 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(230.0250) Optical devices : Optoelectronics
(230.4910) Optical devices : Oscillators
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 28, 2011
Manuscript Accepted: December 22, 2011
Published: January 10, 2012

Citation
Wen-Hung Tseng and Kai-Ming Feng, "Enhancing long-term stability of the optoelectronic oscillator with a probe-injected fiber delay monitoring mechanism," Opt. Express 20, 1597-1607 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1597


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B13(8), 1725–1735 (1996). [CrossRef]
  2. D. A. Howe and A. Hati, “Low-noise X-band oscillator and amplifier technologies: comparison and status,” in Proceedings of 2005 Joint Meeting IEEE International Frequency Control Symposium and Precise Time and Time Interval Systems and Applications, pp. 481–487 (2005).
  3. X. S. Yao, L. Maleki, Y. Ji, G. Lutes, and M. Tu, “A dual-loop opto-electronic oscillator,” TMO Progress Report 42–135 (1998), http://ipnpr.jpl.nasa.gov/progress_report/42-135/135C.pdf .
  4. W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microwave Theory Tech.53(3), 929–933 (2005). [CrossRef]
  5. X. S. Yao and L. Maleki, “Dual microwave and optical oscillator,” Opt. Lett.22(24), 1867–1869 (1997). [CrossRef] [PubMed]
  6. N. Yu, E. Salik, and L. Maleki, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,” Opt. Lett.30(10), 1231–1233 (2005). [CrossRef] [PubMed]
  7. A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery mode based opto-electronic oscillators,” in Proceedings of 2010 IEEE International Frequency Control Symposium, pp. 554–557 (2010).
  8. D. Eliyahu, K. Sariri, M. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of 2002 IEEE International Frequency Control Symposium, pp. 580–583 (2002).
  9. J. M. Kim and D. Cho, “Optoelectronic oscillator stabilized to an intra-loop Fabry-Perot cavity by a dual servo system,” Opt. Express18(14), 14905–14912 (2010). [CrossRef] [PubMed]
  10. M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag.7(4), 38–47 (2006). [CrossRef]
  11. C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17).,” Phys. Rev. Lett.94(20), 203904 (2005). [CrossRef] [PubMed]
  12. M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett.34(19), 2949–2951 (2009). [CrossRef] [PubMed]
  13. Ł. Śliwczyński, P. Krehlik, Ł. Buczek, and M. Lipiński, “Active propagation delay stabilization for fiber optic frequency distribution using controlled electronic delay lines,” IEEE Trans. Instrum. Meas.60(4), 1480–1488 (2011). [CrossRef]
  14. O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B98(4), 723–727 (2010). [CrossRef]
  15. H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B25(12), 2029–2035 (2008). [CrossRef]
  16. N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett.32(21), 3056–3058 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-21-3056 . [CrossRef] [PubMed]
  17. G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett.34(15), 2270–2272 (2009). [CrossRef] [PubMed]
  18. S. Romisch, J. Kitching, E. Ferre-Pikal, L. Hollberg, and F. L. Walls, “Performance evaluation of an optoelectronic oscillator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control47(5), 1159–1165 (2000). [CrossRef] [PubMed]
  19. N. L. Duy, L. V. H. Nam, V. V. Yem, L. Vivien, E. Cassan, and B. Journet, “Materials used for the optical section of an optoelectronic oscillator,” Adv. Nat. Sci.: Nanosci. Nanotechnol.1(4), 045008 (2010). [CrossRef]
  20. R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications-a tutorial,” IEEE Trans. Commun.30(5), 855–884 (1982). [CrossRef]
  21. A. Bauch, D. Piester, M. Fujieda, and W. Lewandowski, “Directive for operational use and data handling in two-way satellite time and frequency transfer (TWSTFT),” Rapport BIPM-2011/01, http://www.bipm.org/utils/common/pdf/rapportBIPM/2011/01.pdf .
  22. M. Rost, M. Fujieda, and D. Piester, “Time transfer through optical fibers (TTTOF): progress on calibrated clock comparisons,” in Proceedings of 24th European Frequency and Time Forum, paper 6.4 (2010).
  23. D. W. Allan, “Statistics of Atomic Frequency Standard,” Proc. IEEE54(2), 221–230 (1966). [CrossRef]
  24. O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express19(7), 5839–5854 (2011). [CrossRef] [PubMed]
  25. T. Gotoh, J. Amagai, T. Hobiger, M. Fujieda, and M. Aida, “Development of a GPU based two-way time transfer modem,” IEEE Trans. Instrum. Meas.60(7), 2495–2499 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited