OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1668–1684

Second harmonic generation in three-dimensional structures based on homogeneous centrosymmetric metallic spheres

Jinying Xu and Xiangdong Zhang  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1668-1684 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2264 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The theory of second harmonic generation (SHG) in three-dimensional structures consisting of arbitrary distributions of metallic spheres made of centrosymmetric materials is developed by means of multiple scattering of electromagnetic multipole fields. The electromagnetic field at both the fundamental frequency and second harmonic, as well as the scattering cross section, are calculated in a series of particular cases such as a single metallic sphere, two metallic spheres, chains of metallic spheres, and other distributions of the metallic spheres. It is shown that the linear and nonlinear optical response of all ensembles of metallic spheres is strongly influenced by the excitation of localized surface plasmon-polariton resonances. The physical origin for such a phenomenon has also been analyzed.

© 2012 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nonlinear Optics

Original Manuscript: October 25, 2011
Revised Manuscript: December 3, 2011
Manuscript Accepted: December 7, 2011
Published: January 11, 2012

Jinying Xu and Xiangdong Zhang, "Second harmonic generation in three-dimensional structures based on homogeneous centrosymmetric metallic spheres," Opt. Express 20, 1668-1684 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
  2. T. F. Heinz, Nonlinear Surface Electromagnetic Phenomena, H.-E. Ponath and G. I. Stegeman, eds. (North-Holland, Amsterdam, 1991) Chap. 5.
  3. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett.83(20), 4045–4048 (1999). [CrossRef]
  4. H. Wang, E. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett.259(1-2), 15–20 (1996). [CrossRef]
  5. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B21(7), 1328–1347 (2004). [CrossRef]
  6. G. Gonella and H.-L. Dai, “Determination of adsorption geometry on spherical particles from nonlinear Mie theory analysis of surface second harmonic generation,” Phys. Rev. B84(12), 121402(R) (2011). [CrossRef]
  7. K. B. Eisenthal, “Second harmonic spectroscopy of aqueous nano- and microparticle interfaces,” Chem. Rev.106(4), 1462–1477 (2006). [CrossRef] [PubMed]
  8. M. D. McMahon, R. Lopez, R. F. Haglund, E. A. Ray, and P. H. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B73(4), 041401(R) (2006). [CrossRef]
  9. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett.98(16), 167403 (2007). [CrossRef] [PubMed]
  10. Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104(20), 207402 (2010). [CrossRef] [PubMed]
  11. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010). [CrossRef] [PubMed]
  12. J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles,” Phys. Rev. Lett.105(7), 077401 (2010). [CrossRef] [PubMed]
  13. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  14. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science315(5808), 47–49 (2007). [CrossRef] [PubMed]
  15. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  16. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008). [CrossRef] [PubMed]
  17. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003). [CrossRef] [PubMed]
  18. C. C. Neacsu, G. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B71(20), 201402 (2005). [CrossRef]
  19. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B71(16), 165407 (2005). [CrossRef]
  20. J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A73(2), 023819 (2006). [CrossRef]
  21. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006). [CrossRef] [PubMed]
  22. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express15(8), 5238–5247 (2007). [CrossRef] [PubMed]
  23. M. C. Larciprete, A. Belardini, M. G. Cappeddu, D. de Ceglia, M. Centini, E. Fazio, C. Sibilia, M. J. Bloemer, and M. Scalora, “Second-harmonic generation from metallodielectric multilayer photonic-band-gap structures,” Phys. Rev. A77(1), 013809 (2008). [CrossRef]
  24. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express16(22), 17196–17208 (2008). [CrossRef] [PubMed]
  25. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007). [CrossRef] [PubMed]
  26. H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Chiral coupling in gold nanodimers,” Appl. Phys. Lett.93(18), 183115 (2008). [CrossRef]
  27. E. Kim, F. Wang, W. Wu, Z. Yu, and Y. R. Shen, “Nonlinear optical spectroscopy of photonic metamaterials,” Phys. Rev. B78(11), 113102 (2008). [CrossRef]
  28. Y. Pavlyukh and W. Hubner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B70(24), 245434 (2004). [CrossRef]
  29. C. I. Valencia, E. R. Mendez, and B. S. Mendoza, “Second-harmonic generation in the scattering of light by an infinite cylinder,” J. Opt. Soc. Am. B21(1), 36–44 (2004). [CrossRef]
  30. A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B79(15), 155420 (2009). [CrossRef]
  31. J. Petschulat, A. Chipouline, A. Tünnermann, and T. Pertsch, “Multipole nonlinearity of metamaterials,” Phys. Rev. A80(6), 063828 (2009). [CrossRef]
  32. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B79(23), 235109 (2009). [CrossRef]
  33. L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. Osgood, Jr., “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B79(23), 235416 (2009). [CrossRef]
  34. S. Viarbitskaya, V. Kapshai, P. van der Meulen, and T. Hansson, “Size dependence of second-harmonic generation at the surface of microspheres,” Phys. Rev. A81(5), 053850 (2010). [CrossRef]
  35. R. Iliew, C. Etrich, T. Pertsch, F. Lederer, and Y. S. Kivshar, “Huge enhancement of backward second-harmonic generation with slow light in photonic crystals,” Phys. Rev. A81(2), 023820 (2010). [CrossRef]
  36. E. Centeno, D. Felbacq, and D. Cassagne, “All-angle phase matching condition and backward second-harmonic localization in nonlinear photonic crystals,” Phys. Rev. Lett.98(26), 263903 (2007). [CrossRef] [PubMed]
  37. V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. E. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett.104(12), 127401 (2010). [CrossRef] [PubMed]
  38. C. G. Biris and N. C. Panoiu, “Second harmonic generation in metamaterials based on homogeneous centrosymmetric nanowires,” Phys. Rev. B81(19), 195102 (2010). [CrossRef]
  39. C. G. Biris and N. C. Panoiu, “Nonlinear pulsed excitation of high-Q optical modes of plasmonic nanocavities,” Opt. Express18(16), 17165–17179 (2010). [CrossRef] [PubMed]
  40. Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt.34(21), 4573–4588 (1995). [CrossRef] [PubMed]
  41. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun.113(1), 49–77 (1998). [CrossRef]
  42. X. D. Wang, X.-G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic waves,” Phys. Rev. B Condens. Matter47(8), 4161–4167 (1993). [CrossRef] [PubMed]
  43. A. Moroz, “Density-of-states calculations and multiple-scattering theory for photons,” Phys. Rev. B Condens. Matter51(4), 2068–2081 (1995). [CrossRef] [PubMed]
  44. K. Ohtaka and Y. Tanabe, “Photonic band using vector spherical waves. 1. Various properties of Bloch electric fields and heavy photons,” J. Phys. Soc. Jpn.65(7), 2265–2275 (1996). [CrossRef]
  45. F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B60(8), 6086–6102 (1999). [CrossRef]
  46. W. Y. Zhang, C. T. Chan, and P. Sheng, “Multiple scattering theory and its application to photonic band gap systems consisting of coated spheres,” Opt. Express8(3), 203–208 (2001). [CrossRef] [PubMed]
  47. J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, “Photonic clusters formed by dielectric microspheres: Numerical simulations,” Phys. Rev. B72(8), 085130 (2005). [CrossRef]
  48. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  49. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), p. 363.
  50. V. Yannopapas and N. V. Vitanov, “Electromagnetic Green’s tensor and local density of states calculations for collections of sphererical scatters,” Phys. Rev. B75(11), 115124 (2007). [CrossRef]
  51. F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009). [CrossRef]
  52. J. Xu and X. Zhang, “Negative electron energy loss and second-harmonic emission of nonlinear nanoparticles,” Opt. Express19(23), 22999–23007 (2011). [CrossRef] [PubMed]
  53. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24(24), 4493–4499 (1985). [CrossRef] [PubMed]
  54. D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys.96(7), 3626–3634 (2004). [CrossRef]
  55. S. A. Maier, Plasmonics: Fundamental and Applications (Springer, New York, 2007).
  56. J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A79(5), 051801 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited