OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1714–1726

Method of surface topography retrieval by direct solution of sparse weighted seminormal equations

Jeffrey Koskulics, Steven Englehardt, Steven Long, Yongxiang Hu, and Knut Stamnes  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1714-1726 (2012)
http://dx.doi.org/10.1364/OE.20.001714


View Full Text Article

Enhanced HTML    Acrobat PDF (1562 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method is presented to estimate the topography of a rough surface. A formulation is provided in which immediate measurements and a priori observations of surface elevation, slope and curvature, are considered simultaneously as a linear algebraic system of finite difference equations. Least squares solutions are computed directly by sparse orthogonal-triangular (QR) factorization of the weighted seminormal equations, an approach made practical for large systems with powerful computational hardware and algorithms that have become available recently. Retrievals are demonstrated from synthetic slope data and from measurements of slope on a rough water surface. The method provides a general approach to retrieving topography from measurements of elevation, slope and curvature.

© 2012 OSA

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(080.2720) Geometric optics : Mathematical methods (general)
(100.3190) Image processing : Inverse problems
(120.2830) Instrumentation, measurement, and metrology : Height measurements
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(240.6700) Optics at surfaces : Surfaces

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 9, 2011
Revised Manuscript: December 4, 2011
Manuscript Accepted: December 6, 2011
Published: January 11, 2012

Citation
Jeffrey Koskulics, Steven Englehardt, Steven Long, Yongxiang Hu, and Knut Stamnes, "Method of surface topography retrieval by direct solution of sparse weighted seminormal equations," Opt. Express 20, 1714-1726 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1714


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Cox and X. Zhang, “Contours of slopes of a rippled water surface,” Opt. Express19(20), 18789–18794 (2011). [CrossRef] [PubMed]
  2. W. C. Keller and B. L. Gotwols, “Two-dimensional optical measurement of wave slope,” Appl. Opt.22(22), 3476–3478 (1983). [CrossRef] [PubMed]
  3. X. Zhang and C. S. Cox, “Measuring the two-dimensional structure of a wavy water surface optically: a surface gradient detector,” Exp. Fluids17(4), 225–237 (1994). [CrossRef]
  4. C. J. Zappa, M. L. Banner, H. Schultz, A. Corrada-Emmanuel, L. B. Wolff, and J. Yalcin, “Retrieval of short ocean wave slope using polarimetric imaging,” Meas. Sci. Technol.19(5), 05503 (2008). [CrossRef]
  5. Q. Li, M. Zhao, S. Tang, S. Sun, and J. Wu, “Two-dimensional scanning laser slope gauge: measurements of ocean-ripple structures,” Appl. Opt.32(24), 4590–4597 (1993). [CrossRef] [PubMed]
  6. B. Jähne, J. Klinke, and S. Waas, “Imaging of short ocean wind waves: a critical theoretical review,” J. Opt. Soc. Am. A11(8), 2197–2209 (1994). [CrossRef]
  7. W. Munk, “An inconvenient sea truth: spread, steepness, and skewness of surface slopes,” Annu. Rev. Mar. Sci.1(1), 377–415 (2009). [CrossRef] [PubMed]
  8. A. Freedman, D. McWatters, and M. Spencer, “The Aquarius scatterometer: an active system for measuring surface roughness for sea-surface brightness temperature correction,” presented at the IEEE International Geoscience & Remote Sensing Symposium, Denver, Colorado, July 31- August 4, 2006.
  9. Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. Discuss.8(1), 2771–2793 (2008). [CrossRef]
  10. F. M. Bréon and N. Henriot, “Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions,” J. Geophys. Res.111(C6), C06005 (2006). [CrossRef] [PubMed]
  11. S. Kay, J. Hedley, S. Lavender, and A. Nimmo-Smith, “Light transfer at the ocean surface modeled using high resolution sea surface realizations,” Opt. Express19(7), 6493–6504 (2011). [CrossRef] [PubMed]
  12. R. Klette and K. Schlüns, “Height data from gradient fields,” Proc. SPIE2908, 204–215 (1996). [CrossRef]
  13. K. Schlüns and R. Klette, “Local and global integration of discrete vector fields,” in Advances in Computer Vision, F. Solina, W. Kropatsch, R. Klette, and R. Bajcsy, eds. (Springer, 1997) pp. 149–158.
  14. R. I. Mclachlan, G. R. W. Quispel, and N. Robidoux, “Geometric integration using discrete gradients,” Philos. Trans. R. Soc. Lond. A357, 1–26 (1998).
  15. S. W. Bahk, “Highly accurate wavefront reconstruction algorithms over broad spatial-frequency bandwidth,” Opt. Express19(20), 18997–19014 (2011). [CrossRef] [PubMed]
  16. X. Zhang, “An algorithm for calculating water surface elevations from surface gradient image data,” Exp. Fluids21(1), 43–48 (1996). [CrossRef]
  17. S. Ettl, J. Kaminski, M. C. Knauer, and G. Häusler, “Shape reconstruction from gradient data,” Appl. Opt.47(12), 2091–2097 (2008). [CrossRef] [PubMed]
  18. M. Grédiac, “Method for surface reconstruction from slope or curvature measurements of rectangular areas,” Appl. Opt.36(20), 4823–4829 (1997). [CrossRef] [PubMed]
  19. C. Elster, J. Gerhardt, P. Thomsenschmidt, M. Schulz, and I. Weingartner, “Reconstructing surface profiles from curvature measurements,” Optik (Stuttg.)113(4), 154–158 (2002). [CrossRef]
  20. D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am.67(3), 370–375 (1977). [CrossRef]
  21. R. H. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am.67(3), 375–378 (1977). [CrossRef]
  22. R. H. Hudgin, “Optimal wave-front estimation,” J. Opt. Soc. Am.67(3), 378–382 (1977). [CrossRef]
  23. B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am.69(3), 393–399 (1979). [CrossRef]
  24. J. Herrmann, “Least-squares wave front errors of minimum norm,” J. Opt. Soc. Am.70(1), 28–35 (1980). [CrossRef]
  25. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am.70(8), 998–1006 (1980). [CrossRef]
  26. M. Harker and P. O’Leary, “Least squares surface reconstruction from measured gradient fields,” in IEEE Conference on Computer Vision and Pattern Recognition (2008) pp. 1–7.
  27. B. Jähne, M. Schmidt, and R. Rocholz, “Combined optical slope/height measurements of short wind waves: principle and calibration,” Meas. Sci. Technol.16(10), 1937–1944 (2005). [CrossRef]
  28. G. Strang, Introduction to Applied Mathematics, 1st ed. (Wellesley-Cambridge Press, 1986).
  29. T. Davis, “Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization,” ACM T. Math. Software 38, (2011).
  30. T. Davis, “SuiteSparse,” http://www.cise.ufl.edu/research/sparse/SuiteSparse/ .
  31. N. J. Higham, Accuracy and Stability of Numerical Algorithms (SIAM, 1996).
  32. Å. Björck, Numerical Methods for Least Squares Problems (SIAM, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (3843 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited