OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1741–1753

Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system

Jia-Gui Wu, Zheng-Mao Wu, Guang-Qiong Xia, and Guo-Ying Feng  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1741-1753 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2528 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, evolution of time delay (TD) signature of chaos generated in a mutual delay-coupled semiconductor lasers (MDC-SLs) system is investigated experimentally and theoretically. Two statistical methods, including self-correlation function (SF) and permutation entropy (PE), are used to estimate the TD signature of chaotic time series. Through extracting the characteristic peak from the SF curve, a series of TD signature evolution maps are firstly obtained in the parameter space of coupled strength and frequency detuning. Meantime, the influences of injection current on the evolution maps of TD signature have been discussed, and the optimum scope of TD signature suppression is also specified. An overall qualitative agreement between our theoretical and experimental results is obtained.

© 2012 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.3100) Nonlinear optics : Instabilities and chaos

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 15, 2011
Revised Manuscript: December 25, 2011
Manuscript Accepted: January 2, 2012
Published: January 11, 2012

Jia-Gui Wu, Zheng-Mao Wu, Guang-Qiong Xia, and Guo-Ying Feng, "Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system," Opt. Express 20, 1741-1753 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science279(5354), 1198–1200 (1998). [CrossRef] [PubMed]
  2. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005). [CrossRef] [PubMed]
  3. F.-Y. Lin and J.-M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. Quantum Electron.40(6), 682–689 (2004). [CrossRef]
  4. F.-Y. Lin and J.-M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron.10(5), 991–997 (2004). [CrossRef]
  5. M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett.89(9), 091106 (2006). [CrossRef]
  6. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008). [CrossRef]
  7. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009). [CrossRef] [PubMed]
  8. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics4(1), 58–61 (2010). [CrossRef]
  9. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express18(18), 18763–18768 (2010). [CrossRef] [PubMed]
  10. J. Ohtsubo, “Semiconductor Lasers: Stability, Instability and chaos,” Second Ed., Springer-Verlag, Berlin Heidelberg (2008).
  11. R. Vicente, J. Dauden, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. Quantum Electron.41(4), 541–548 (2005). [CrossRef]
  12. J. Paul, M. W. Lee, and K. A. Shore, “3.5-GHz signal transmission in an all-optical chaotic communication scheme using 1550-nm diode lasers,” IEEE Photon. Technol. Lett.17(4), 920–922 (2005). [CrossRef]
  13. T. Heil, I. Fischer, W. Elsässer, J. Mulet, and C. R. Mirasso, “Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers,” Phys. Rev. Lett.86(5), 795–798 (2001). [CrossRef] [PubMed]
  14. E. Klein, N. Gross, E. Kopelowitz, M. Rosenbluh, L. Khaykovich, W. Kinzel, and I. Kanter, “Public-channel cryptography based on mutual chaos pass filters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74, 046201 (2006). [CrossRef] [PubMed]
  15. R. Vicente, C. R. Mirasso, and I. Fischer, “Simultaneous bidirectional message transmission in a chaos-based communication scheme,” Opt. Lett.32(4), 403–405 (2007). [CrossRef] [PubMed]
  16. W. L. Zhang, W. Pan, B. Luo, X. H. Zou, M. Y. Wang, and Z. Zhou, “Chaos synchronization communication using extremely unsymmetrical bidirectional injections,” Opt. Lett.33(3), 237–239 (2008). [CrossRef] [PubMed]
  17. J. F. Martinez Avila and J. R. Rios Leite, “Time delays in the synchronization of chaotic coupled lasers with feedback,” Opt. Express17(24), 21442–21451 (2009). [CrossRef] [PubMed]
  18. T. Deng, G. Q. Xia, Z. M. Wu, X. D. Lin, and J. G. Wu, “Chaos synchronization in mutually coupled semiconductor lasers with asymmetrical bias currents,” Opt. Express19(9), 8762–8773 (2011). [CrossRef] [PubMed]
  19. H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, “The analysis of observed chaotic data in physical systems,” Rev. Mod. Phys.65(4), 1331–1392 (1993). [CrossRef]
  20. M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “Tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics54(4), R3082–R3085 (1996). [CrossRef] [PubMed]
  21. H. Voss and J. Kurths, “Reconstruction of nonlinear time-delayed feedback models from optical data,” Chaos Solitons Fractals10, 805–809 (1999).
  22. A. C. Fowler and G. Kember, “Delay recognition in chaotic time series,” Phys. Lett. A175(6), 402–408 (1993). [CrossRef]
  23. M. D. Prokhorov, V. I. Ponomarenko, A. S. Karavaev, and B. P. Bezruchko, “Reconstruction of time-delayed feedback systems from time series,” Physica D203(3-4), 209–223 (2005). [CrossRef]
  24. M. J. Bünner, T. Meyer, A. Kittel, and J. Parisi, “Recovery of the time-evolution equation of time-delay systems from time series,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(5), 5083–5089 (1997). [CrossRef]
  25. R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett.81(3), 558–561 (1998). [CrossRef]
  26. S. Ortin, J. M. Gutierrez, L. Pesquera, and H. Vasquez, “Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction,” Physica A351(1), 133–141 (2005). [CrossRef]
  27. V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, and D. S. Citrin, “Time delay identification in chaotic cryptosystems ruled by delay-differential equations,” J. Opt. Technol.72(5), 373–377 (2005). [CrossRef]
  28. D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett.32(20), 2960–2962 (2007). [CrossRef] [PubMed]
  29. D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron.45(7), 879–891 (2009). [CrossRef]
  30. J. G. Wu, G. Q. Xia, X. Tang, X. D. Lin, T. Deng, L. Fan, and Z. M. Wu, “Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser,” Opt. Express18(7), 6661–6666 (2010). [CrossRef] [PubMed]
  31. J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express17(22), 20124–20133 (2009). [CrossRef] [PubMed]
  32. C. Bandt and B. Pompe, “Permutation entropy: a natural complexity measure for time series,” Phys. Rev. Lett.88(17), 174102 (2002). [CrossRef] [PubMed]
  33. L. Zunino, M. C. Soriano, I. Fischer, O. A. Rosso, and C. R. Mirasso, “Permutation-information-theory approach to unveil delay dynamics from time-series analysis,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.82(4), 046212 (2010). [CrossRef] [PubMed]
  34. M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron.47(2), 252–261 (2011). [CrossRef]
  35. C. Zhou and C. H. Lai, “Extracting messages masked by chaotic signals of time-delay systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics60(1), 320–323 (1999). [CrossRef] [PubMed]
  36. V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J. B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption system ruled by nonlinear time delay differential equations,” Phys. Lett. A308(1), 54–60 (2003). [CrossRef]
  37. M. C. Soriano, P. Colet, and C. R. Mirasso, “Security implications of open and closed-loop receivers in all-optical chaos-based communications,” IEEE Photon. Technol. Lett.21(7), 426–428 (2009). [CrossRef]
  38. M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle, “Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications,” IEE Proc., Optoelectron.152(2), 97–102 (2005). [CrossRef]
  39. J. G. Wu, G. Q. Xia, L. P. Cao, and Z. M. Wu, “Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser,” Opt. Commun.282(15), 3153–3156 (2009). [CrossRef]
  40. E. M. Shahverdiev and K. A. Shore, “Erasure of time-delay signatures in the output of an opto-electronic feedback laser with modulated delays and chaos synchronisation,” IET Optoelectron.3(6), 326–330 (2009). [CrossRef]
  41. J. G. Wu, Z. M. Wu, X. Tang, X. D. Lin, T. Deng, G. Q. Xia, and G. Y. Feng, “Simultaneous generation of two sets of time delay signature eliminated chaotic signals by using mutually coupled semiconductor lasers,” IEEE Photon. Technol. Lett.23(12), 759–761 (2011). [CrossRef]
  42. R. M. Nguimdo, M. C. Soriano, and P. Colet, “Role of the phase in the identification of delay time in semiconductor lasers with optical feedback,” Opt. Lett.36(22), 4332–4334 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited