OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1790–1797

Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers

Y. Sikali Mamdem, E. Burov, L-A. de Montmorillon, Y. Jaouën, G. Moreau, R. Gabet, and F. Taillade  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1790-1797 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (879 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Residual stresses inside optical fibers can impact significantly on Brillouin spectrum properties. We have analyzed the importance of internal stresses on the Brillouin Gain Spectrum (BGS) for a conventional G.652 fiber and compared modeling results to measurements. Then the residual internal stresses have been investigated for a set of trench-assisted fibers: fibers are coming from a single preform with different draw tensions. Numerical modeling based on measured internal stresses profiles are compared with corresponding BGS experimental results. Clearly, Brillouin spectrum is shifted linearly versus draw tension with a coefficient of −20MHz/100g and its linewidth increases.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(290.5830) Scattering : Scattering, Brillouin

ToC Category:
Fibers, Fiber Devices, and Amplifiers

Original Manuscript: October 3, 2011
Revised Manuscript: December 22, 2011
Manuscript Accepted: December 22, 2011
Published: January 12, 2012

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Y. Sikali Mamdem, E. Burov, L-A. de Montmorillon, Y. Jaouën, G. Moreau, R. Gabet, and F. Taillade, "Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers," Opt. Express 20, 1790-1797 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron.10(2), 300–311 (2004). [CrossRef]
  2. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express13(14), 5338–5346 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-14-5338 . [CrossRef] [PubMed]
  3. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol.22(2), 631–639 (2004). [CrossRef]
  4. W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett.19(18), 1389–1391 (2007). [CrossRef]
  5. W. Zou, Z. He, and K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett.18(23), 2487–2489 (2006). [CrossRef]
  6. Y. Sikali Mamdem, X. Pheron, F. Taillade, Y. Jaouën, R. Gabet, V. Lanticq, G. Moreau, A. Boukenter, Y. Ouerdane, S. Lesoille, and J. Bertrand, “Two-dimensional FEM analysis of Brillouin Gain Spectra in acoustic guiding and antiguiding single mode optical fibers,” in Proceedings of COMSOL Multiphysics Conference (session Acoustic II, Paris, 2010), 111–124.
  7. Y. Sikali Mamdem, E. Burov, L.-A de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” ECOC 2011, paper We.10.P1.16, Geneva, Sept. 2011.
  8. A. Safaai-Jazi, C.-K. Jen, and G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control33(1), 59–68 (1986). [CrossRef] [PubMed]
  9. L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, and M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun.282(12), 2431–2436 (2009). [CrossRef]
  10. S. Dasgupta, F. Poletti, S. Liu, P. Petropoulos, D. J. Richardson, L. Grüner-Nielsen, and S. Herstrøm, “Modeling Brillouin Gain Spectrum of solid and microstructured optical fibers using a finite element method,” J. Lightwave Technol.29(1), 22–30 (2011). [CrossRef]
  11. C. A. S. de Oliveira, C. K. Jen, A. Shang, and C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shifts,” J. Opt. Soc. Am. B10(6), 969–971 (1993). [CrossRef]
  12. G. W. Scherer, “Stress-induced index profile distortion in optical waveguides,” Appl. Opt.19(12), 2000–2006 (1980). [CrossRef] [PubMed]
  13. S. Chaki and G. Bourse, “Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands,” Ultrasonics49(2), 162–171 (2009). [CrossRef] [PubMed]
  14. R. Le Parc, “Diffusion de rayonnement et relaxation structurale dans les verres de silice et les préformes de fibres optiques,” PhD thesis (Claude Bernard University, Lyon-1, 2002).
  15. F. Terki, C. Levelut, M. Boissier, and J. Pelous, “Low-frequency dynamics and medium-range order in vitreous silica,” Phys. Rev. B Condens. Matter53(5), 2411–2418 (1996). [CrossRef] [PubMed]
  16. V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, and G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett.34(7), 1018–1020 (2009). [CrossRef] [PubMed]
  17. L.-A. de Montmorillon, P. Matthijsse, F. Gooijer, D. Molin, F. Achten, X. Meersseman, and C. Legrand, “Next Generation SMF with Reduced Bend Sensitivity for FTTH Networks,” in Proceedings of ECOC Conference (Cannes, France, paper Mo.3.3.2, 2006).
  18. P. K. Bachmann, W. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 2: Fibers,” Appl. Opt.26(7), 1175–1182 (1987). [CrossRef] [PubMed]
  19. F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett.84(24), 4983–4985 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited