OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1856–1861

Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems

Jian-Bo Li, Nam-Chol Kim, Mu-Tian Cheng, Li Zhou, Zhong-Hua Hao, and Qu-Quan Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1856-1861 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (979 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigated optical third-order nonlinearity of a coherently coupled exciton-plasmon hybrid system under a strong control field with a weak probe field. The analytic formulas of exciton population and effective third-order optical susceptibility of the hybrid of a metal nanoparticle (MNP) and a semiconductor quantum dot (SQD) were deduced. The bistable exciton population and the induced bistable nonlinear absorption and refraction response were revealed. The bistability region can be tuned by adjusting the size of metal nanoparticle, interparticle distance and intensity of control field. Our results have perspective applications in optical information processing based on resonant coupling of exciton-plasmon.

© 2012 OSA

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(240.6680) Optics at surfaces : Surface plasmons
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Nonlinear Optics

Original Manuscript: November 14, 2011
Revised Manuscript: January 4, 2012
Manuscript Accepted: January 5, 2012
Published: January 12, 2012

Jian-Bo Li, Nam-Chol Kim, Mu-Tian Cheng, Li Zhou, Zhong-Hua Hao, and Qu-Quan Wang, "Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems," Opt. Express 20, 1856-1861 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006). [CrossRef] [PubMed]
  2. N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-Aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11(4), 1556–1560 (2011). [CrossRef] [PubMed]
  3. A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7(3), 620–625 (2007). [CrossRef] [PubMed]
  4. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]
  5. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006). [CrossRef]
  6. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007). [CrossRef] [PubMed]
  7. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007). [CrossRef] [PubMed]
  8. G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33(19), 2212–2214 (2008). [CrossRef] [PubMed]
  9. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006). [CrossRef] [PubMed]
  10. W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B 84, 081405 (R)(2011).
  11. S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79(23), 233309 (2009). [CrossRef]
  12. M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32(15), 2125–2127 (2007). [CrossRef] [PubMed]
  13. S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009). [CrossRef] [PubMed]
  14. J. Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103(10), 104314 (2008). [CrossRef]
  15. R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011). [CrossRef]
  16. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007). [CrossRef]
  17. S. M. Sadeghi, “Tunable nanoswitches based on nanoparticle meta-molecules,” Nanotechnology 21(35), 355501 (2010). [CrossRef] [PubMed]
  18. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]
  19. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  20. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  21. J. S. White, G. Veronis, Z. F. Yu, E. S. Barnard, A. Chandran, S. H. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009). [CrossRef] [PubMed]
  22. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]
  23. H. M. Gong, X. H. Wang, Y. M. Du, and Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006). [CrossRef] [PubMed]
  24. H. I. Elim, W. Ji, J. Yang, and J. Y. Lee, “Intensity-dependent enhancement of saturable absorption in PbS–Au4 nanohybrid composites: evidence for resonant energy transfer by Auger recombination,” Appl. Phys. Lett. 92(25), 251106 (2008). [CrossRef]
  25. X. Zhang and G. G. Xiong, “Metal nanoparticle-induced variation of nonlinear optical susceptibility of a CdTe semiconductor quantum dot,” Physica E 41(7), 1258–1262 (2009). [CrossRef]
  26. Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41(18), 185503 (2008). [CrossRef]
  27. V. A. Malyshev, H. Glaeske, and K.-H. Feller, “Absence of bistable behavior in the optical response of a dimer,” Phys. Rev. A 58(2), 1496–1500 (1998). [CrossRef]
  28. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008). [CrossRef] [PubMed]
  29. R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010). [CrossRef]
  30. A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84(3), 035314 (2011). [CrossRef]
  31. H. Wang and K. D. Zhu, “Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator,” Opt. Express 18(15), 16175–16182 (2010). [CrossRef] [PubMed]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  33. R. W. Boyd, Nonlinear Optics (Academic, New York, 2008).
  34. B. I. Greene, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61(3), 325–328 (1988). [CrossRef] [PubMed]
  35. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited