OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1878–1895

Experimental evidence of the theoretical spatial frequency response of cubic phase mask wavefront coding imaging systems

Manjunath Somayaji, Vikrant R. Bhakta, and Marc P. Christensen  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1878-1895 (2012)
http://dx.doi.org/10.1364/OE.20.001878


View Full Text Article

Enhanced HTML    Acrobat PDF (3025 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical transfer function of a cubic phase mask wavefront coding imaging system is experimentally measured across the entire range of defocus values encompassing the system’s functional limits. The results are compared against mathematical expressions describing the spatial frequency response of these computational imagers. Experimental data shows that the observed modulation and phase transfer functions, available spatial frequency bandwidth and design range of this imaging system strongly agree with previously published mathematical analyses. An imaging system characterization application is also presented wherein it is shown that the phase transfer function is more robust than the modulation transfer function in estimating the strength of the cubic phase mask.

© 2012 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.4850) Imaging systems : Optical transfer functions
(110.1758) Imaging systems : Computational imaging
(110.7348) Imaging systems : Wavefront encoding

ToC Category:
Imaging Systems

History
Original Manuscript: November 22, 2011
Revised Manuscript: January 7, 2012
Manuscript Accepted: January 9, 2012
Published: January 12, 2012

Citation
Manjunath Somayaji, Vikrant R. Bhakta, and Marc P. Christensen, "Experimental evidence of the theoretical spatial frequency response of cubic phase mask wavefront coding imaging systems," Opt. Express 20, 1878-1895 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1878


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt.34(11), 1859–1866 (1995). [CrossRef] [PubMed]
  2. J. van der Gracht, E. R. Dowski, M. G. Taylor, and D. M. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett.21(13), 919–921 (1996). [CrossRef] [PubMed]
  3. D. L. Marks, R. A. Stack, D. J. Brady, and J. van der Gracht, “Three-dimensional tomography using a cubic-phase plate extended depth-of-field system,” Opt. Lett.24(4), 253–255 (1999). [CrossRef] [PubMed]
  4. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett.26(12), 875–877 (2001). [CrossRef] [PubMed]
  5. A. Sauceda and J. Ojeda-Castañeda, “High focal depth with fractional-power wave fronts,” Opt. Lett.29(6), 560–562 (2004). [CrossRef] [PubMed]
  6. S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” Proc. SPIE5559, 335–345 (2004). [CrossRef]
  7. J. Ojeda-Castaneda, J. E. A. Landgrave, and H. M. Escamilla, “Annular phase-only mask for high focal depth,” Opt. Lett.30(13), 1647–1649 (2005). [CrossRef] [PubMed]
  8. M. Somayaji and M. P. Christensen, “Form factor enhancement of imaging systems using a cubic phase mask,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, Technical Digest (Optical Society of America, 2005), paper CMB4.
  9. M. Somayaji and M. P. Christensen, “Form factor enhancement of imaging systems using a cubic phase mask,” in Frontiers in Optics, OSA Technical Digest Series (Optical Society of America, 2005), paper FThU5.
  10. M. Somayaji and M. P. Christensen, “Enhancing form factor and light collection of multiplex imaging systems by using a cubic phase mask,” Appl. Opt.45(13), 2911–2923 (2006). [CrossRef] [PubMed]
  11. G. Muyo and A. R. Harvey, “Decomposition of the optical transfer function: wavefront coding imaging systems,” Opt. Lett.30(20), 2715–2717 (2005). [CrossRef] [PubMed]
  12. P. E. X. Silveira and R. Narayanswamy, “Signal-to-noise analysis of task-based imaging systems with defocus,” Appl. Opt.45(13), 2924–2934 (2006). [CrossRef] [PubMed]
  13. M. Somayaji and M. P. Christensen, “Frequency analysis of the wavefront-coding odd-symmetric quadratic phase mask,” Appl. Opt.46(2), 216–226 (2007). [CrossRef] [PubMed]
  14. S. Bagheri, P. E. X. Silveira, and D. P. de Farias, “Analytical optimal solution of the extension of the depth of field using cubic-phase wavefront coding. Part I. Reduced-complexity approximate representation of the modulation transfer function,” J. Opt. Soc. Am. A25(5), 1051–1063 (2008). [CrossRef] [PubMed]
  15. G. Muyo and A. R. Harvey, “The effect of detector sampling in wavefront-coded imaging systems,” J. Opt. A, Pure Appl. Opt.11(5), 054002 (2009). [CrossRef]
  16. M. Demenikov and A. R. Harvey, “Image artifacts in hybrid imaging systems with a cubic phase mask,” Opt. Express18(8), 8207–8212 (2010). [CrossRef] [PubMed]
  17. S. Barwick, “Catastrophes in wavefront-coding spatial-domain design,” Appl. Opt.49(36), 6893–6902 (2010). [CrossRef] [PubMed]
  18. S. Chen, Z. Fan, H. Chang, and Z. Xu, “Nonaxial Strehl ratio of wavefront coding systems with a cubic phase mask,” Appl. Opt.50(19), 3337–3345 (2011). [CrossRef] [PubMed]
  19. H. B. Wach, E. R. Dowski, and W. T. Cathey, “Control of chromatic focal shift through wave-front coding,” Appl. Opt.37(23), 5359–5367 (1998). [CrossRef] [PubMed]
  20. M. Somayaji and M. P. Christensen, “Improving photon count and flat profiles of multiplex imaging systems with the odd-symmetric quadratic phase modulation mask,” Appl. Opt.46(18), 3754–3765 (2007). [CrossRef] [PubMed]
  21. G. E. Johnson, E. R. Dowski, and W. T. Cathey, “Passive ranging through wave-front coding: information and application,” Appl. Opt.39(11), 1700–1710 (2000). [CrossRef] [PubMed]
  22. E. R. Dowski, R. H. Cormack, and S. D. Sarama, “Wavefront coding: jointly optimized optical and digital imaging systems,” Proc. SPIE4041, 114–120 (2000). [CrossRef]
  23. K. Kubala, E. Dowski, and W. T. Cathey, “Reducing complexity in computational imaging systems,” Opt. Express11(18), 2102–2108 (2003). [CrossRef] [PubMed]
  24. R. Narayanswamy, G. E. Johnson, P. E. X. Silveira, and H. B. Wach, “Extending the imaging volume for biometric iris recognition,” Appl. Opt.44(5), 701–712 (2005). [CrossRef] [PubMed]
  25. S.-H. Lee, N.-C. Park, and Y.-P. Park, “Breaking diffraction limit of a small f-number compact camera using wavefront coding,” Opt. Express16(18), 13569–13578 (2008). [CrossRef] [PubMed]
  26. M. Demenikov, E. Findlay, and A. R. Harvey, “Miniaturization of zoom lenses with a single moving element,” Opt. Express17(8), 6118–6127 (2009). [CrossRef] [PubMed]
  27. M. R. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, “Wavefront coding fluorescence microscopy using high aperture lenses,” in Optical Imaging and Microscopy: Techniques and Advanced Systems, P. Török and F.-J. Kao, eds. (Springer-Verlag, Berlin, 2003), pp. 143–165.
  28. S. Bradburn, W. T. Cathey, and E. R. Dowski, “Realizations of focus invariance in optical-digital systems with wave-front coding,” Appl. Opt.36(35), 9157–9166 (1997). [CrossRef] [PubMed]
  29. R. Narayanswamy, A. E. Baron, V. Chumachenko, and A. Greengard, “Applications of wavefront coded imaging,” Proc. SPIE5299, 163–174 (2004). [CrossRef]
  30. E. R. Dowski and G. E. Johnson, “Wavefront coding: a modern method of achieving high-performance and/or low-cost imaging systems,” Proc. SPIE3779, 137–145 (1999). [CrossRef]
  31. M. Somayaji, V. R. Bhakta, and M. P. Christensen, “Experimental validation of exact optical transfer function of cubic phase mask wavefront coding imaging systems,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FThT7.
  32. S. Bradburn, W. T. Cathey, and E. R. Dowski, “Realizations of focus invariance in optical-digital systems with wave-front coding,” Appl. Opt.36(35), 9157–9166 (1997). [CrossRef] [PubMed]
  33. K.-H. Brenner, A. Lohmann, and J. Ojeda-Castañeda, “The ambiguity function as a polar display of the OTF,” Opt. Commun.44(5), 323–326 (1983). [CrossRef]
  34. Q. Kim, G. Yang, C. J. Wrigley, T. J. Cunningham, and B. Pain, “Modulation transfer function of active pixel focal plane arrays,” Proc. SPIE3950, 49–56 (2000). [CrossRef]
  35. V. R. Bhakta, M. Somayaji, and M. P. Christensen, “Effects of sampling on the phase transfer function of incoherent imaging systems,” Opt. Express19(24), 24609–24626 (2011). [CrossRef] [PubMed]
  36. V. R. Bhakta, M. Somayaji, and M. P. Christensen, “Phase transfer function of sampled imaging systems,” in Computational Optical Sensing and Imaging, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuB1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited