OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1903–1911

Active tuning of mid-infrared metamaterials by electrical control of carrier densities

Young Chul Jun, Edward Gonzales, John L. Reno, Eric A. Shaner, Alon Gabbay, and Igal Brener  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1903-1911 (2012)
http://dx.doi.org/10.1364/OE.20.001903


View Full Text Article

Enhanced HTML    Acrobat PDF (1105 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate electrically-controlled active tuning of mid-infrared metamaterial resonances using depletion-type devices. The depletion width in an n-doped GaAs epilayer changes with an electric bias, inducing a change of the permittivity of the substrate and leading to frequency tuning of the resonance. We first present our detailed theoretical analysis and then explain experimental data of bias-dependent metamaterial transmission spectra. This electrical tuning is generally applicable to a variety of infrared metamaterials and plasmonic structures, which can find novel applications in chip-scale active infrared devices.

© 2012 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: November 28, 2011
Revised Manuscript: January 2, 2012
Manuscript Accepted: January 5, 2012
Published: January 12, 2012

Citation
Young Chul Jun, Edward Gonzales, John L. Reno, Eric A. Shaner, Alon Gabbay, and Igal Brener, "Active tuning of mid-infrared metamaterials by electrical control of carrier densities," Opt. Express 20, 1903-1911 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1903


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  3. W. Cai and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).
  4. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40(5), 2494–2507 (2011). [CrossRef] [PubMed]
  5. N. I. Zheludev, “A roadmap for metamaterials,” Opt. Photonics News22(3), 30–35 (2011). [CrossRef]
  6. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  7. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009). [CrossRef] [PubMed]
  8. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010). [CrossRef] [PubMed]
  9. D. H. Werner, D.-H. Kwon, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express15(6), 3342–3347 (2007). [CrossRef] [PubMed]
  10. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009). [CrossRef] [PubMed]
  11. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009). [CrossRef] [PubMed]
  12. E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S.-Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett.91(17), 173105 (2007). [CrossRef]
  13. D. J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, and Y. R. Shen, “Ultrafast modulation of optical metamaterials,” Opt. Express17(20), 17652–17657 (2009). [CrossRef] [PubMed]
  14. H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006). [CrossRef] [PubMed]
  15. B. S. Passmore, D. G. Allen, S. R. Vangala, W. D. Goodhue, D. Wasserman, and E. A. Shaner, “Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb,” Opt. Express17(12), 10223–10230 (2009). [CrossRef] [PubMed]
  16. X. Miao, B. Passmore, A. Gin, W. Langston, S. Vangala, W. Goodhue, E. Shaner, and I. Brener, “Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials,” Appl. Phys. Lett.96(10), 101111 (2010). [CrossRef]
  17. K. Anglin, T. Ribaudo, D. C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” J. Appl. Phys.109(12), 123103 (2011). [CrossRef]
  18. M. Osawa, “Surface-enhanced infrared absorption,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer-Verlag, 2001). p. 163.
  19. M. Vollmer and K.-P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research, and Applications (Wiley-VCH, 2010).
  20. R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett.37(3), 191–193 (2001). [CrossRef]
  21. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1995).
  22. “Semiconductors on NSM,” http://www.ioffe.ru/SVA/NSM/Semicond/ .
  23. A. Raymond, J. L. Robert, and C. Bernard, “The electron effective mass in heavily doped GaAs,” J. Phys. C Solid State Phys.12(12), 2289–2293 (1979). [CrossRef]
  24. M. Cardona, “Electron effective masses of InAs and GaAs as a function of temperature and doping,” Phys. Rev.121(3), 752–758 (1961). [CrossRef]
  25. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys.53(10), R123–R181 (1982). [CrossRef]
  26. R. F. Pierret, Semiconductor Device Fundamentals (Addison Wesley, 1996)
  27. Lumerical Simulations, http://www.lumerical.com
  28. E. D. Palik, Handbook of Optical Constants and Solids (Academic, 1985).
  29. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88(4), 041109 (2006). [CrossRef]
  30. C. J. Sandroff, R. N. Nottenburg, J.-C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett.51(1), 33–35 (1987). [CrossRef]
  31. T. Ohno, “Sulfur passivation of GaAs surfaces,” Phys. Rev. B Condens. Matter44(12), 6306–6311 (1991). [CrossRef] [PubMed]
  32. E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings,” Appl. Phys. Lett.91(18), 181110 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited