OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22001–22011

Bi-functional photonic structure in the Papilio nireus (Papilionidae): modeling by scattering-matrix optical simulations

Eloise Van Hooijdonk, Cédric Vandenbem, Serge Berthier, and Jean Pol Vigneron  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22001-22011 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2455 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Scales of the Papilio nireus combine fluorophores confined in a natural photonic structure. By means of numerical simulations based on the scattering-matrix formalism, we reveal the bi-functional optical role of this peculiar architecture. Two aspects are considered: the absorption of an incident light flux and the emission of another luminous flux. First, results highlight a light trapping effect and a light absorption increase in the ultraviolet, visible and near infrared ranges. Then, results highlight an enhanced fluorescence occurring in the spatial as well as in the frequency domain. This observation could be of great interest to design new optical devices.

© 2012 OSA

OCIS Codes
(000.6800) General : Theoretical physics
(260.2510) Physical optics : Fluorescence
(300.1030) Spectroscopy : Absorption
(300.2140) Spectroscopy : Emission
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: June 29, 2012
Revised Manuscript: August 16, 2012
Manuscript Accepted: August 17, 2012
Published: September 11, 2012

Eloise Van Hooijdonk, Cédric Vandenbem, Serge Berthier, and Jean Pol Vigneron, "Bi-functional photonic structure in the Papilio nireus (Papilionidae): modeling by scattering-matrix optical simulations," Opt. Express 20, 22001-22011 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  3. W. Shen, M. Li, L. Xu, S. Wang, L. Jiang, Y. Song, and D. Zhu, “Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay,” Biosens. Bioelectron. 26(5), 2165–2170 (2011). [CrossRef] [PubMed]
  4. P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82(16), 6854–6861 (2010). [CrossRef] [PubMed]
  5. J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing Fluorescent Concentrator Light Collection Efficiency by Restricting the Angular Emission Characteristic of the Incorporated Luminescent Material - the “Nano-Fluko” Concept,” Proc. SPIE 7725, 77250S, 77250S-11 (2010). [CrossRef]
  6. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007). [CrossRef] [PubMed]
  7. R. E. Galian, M. Laferriere, and J. C. Scaiano, “Doping of photonic crystal fibers with fluorescent probes: possible functional materials for optrode sensors,” J. Mater. Chem. 16, 1697–1701 (2006). [CrossRef]
  8. P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005). [CrossRef] [PubMed]
  9. G. W. Beccaloni, M. J. Scoble, G. S. Robinson, and B. Pitkin, “The Global Lepidoptera Names Index (LepIndex),” (Natural history museum, 2003) retrieved http://www.nhm.ac.uk/entomology/lepindex .
  10. T. Neubauer, “Butterflycorner - butterfly from all over the world,” retrieved http://en.butterflycorner.net .
  11. E. Silk, “Natural photonic crystals,” retrieved http://www.viewsfromscience.com/documents/webpages/natural_photonics_p2.html .
  12. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999). [CrossRef]
  13. O. Deparis and J. P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: The case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng. B 169(1-3), 12–15 (2010). [CrossRef]
  14. J. P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE 6128, 61281G, 61281G-10 (2006). [CrossRef]
  15. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008). [CrossRef]
  16. Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108(6), 063103 (2010). [CrossRef]
  17. O. Deparis, M. Rassart, C. Vandenbem, V. Welch, J. P. Vigneron, L. Dreesen, and S. Lucas, “Dielectric multilayer films fabricated by magnetron sputtering: how far can the iridescence be tuned?” Plasma Process. Polym. 6(S1), S746–S750 (2009). [CrossRef]
  18. S. N. Varnakov, A. S. Parshin, S. G. Ovchinnikov, D. Rafaja, L. Kalvoda, A. D. Balaev, and S. V. Komogortsev, “Structural and magnetic characteristics of Fe/Si bilayer and multilayer films obtained by thermal deposition in ultrahigh vacuum,” Tech. Phys. Lett. 31(11), 947–950 (2005). [CrossRef]
  19. M. Belotti, M. Galli, D. Bajoni, L. C. Andreani, G. Guizzetti, D. Decanini, and Y. Chen, “Investigation of SOI photonic crystals fabricated by both electron-beam lithography and nanoimprint lithography,” Microelectron. Eng. 73–74, 405–411 (2004). [CrossRef]
  20. D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, “Fabrication and optical measurements of silicon on insulator photonic nanostructures,” Microelectron. Eng. 61–62, 529–536 (2002). [CrossRef]
  21. D. P. Gaillot, O. Deparis, V. Welch, B. K. Wagner, J. P. Vigneron, and C. J. Summers, “Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 031922 (2008). [CrossRef] [PubMed]
  22. T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, “Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films,” Bioinspir. Biomim. 3(4), 046004 (2008). [CrossRef] [PubMed]
  23. S. H. Kang, T. Y. Tai, and T. H. Fang, “Replication of butterfly wing microstructures using molding lithography,” Curr. Appl. Phys. 10(2), 625–630 (2010). [CrossRef]
  24. K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, and S. Matsui, “Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition,” J. Vac. Sci. Technol. B 23(2), 570–574 (2005). [CrossRef]
  25. I. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. Lond., B 79(534), 474–481 (1907). [CrossRef]
  26. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci. 266(1427), 1403–1411 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited