OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22018–22033

Modified Maxwell fish-eye approach for efficient coupler design by graded photonic crystals

H. Kurt, B. B. Oner, M. Turduev, and I. H. Giden  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22018-22033 (2012)
http://dx.doi.org/10.1364/OE.20.022018


View Full Text Article

Enhanced HTML    Acrobat PDF (1870 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel design of two dimensional graded index medium that provides coupling of light with high coupling efficiency between two planar dielectric waveguides of different widths (15.46μm vs. 2.21μm). Poor light coupling performance of butt-coupler can be mitigated by implementing tapered coupler at the expense of long coupler section. In order to reduce coupling losses, a new coupling device approach based on graded index (GRIN) concept is proposed. The refractive index distribution is in the form of modified version of the Maxwell fish-eye lens. The inhomogeneous refractive index distribution is approximated by photonic crystals (PCs) such that the positions of each PC rods are appropriately arranged. Strong electric field focusing ability of the designed GRIN PC medium provides relatively high coupling efficiency that is around 90%. Spectral region corresponding to coupling efficiency over 75% has a bandwidth of Δω = 18.56% (284 nm). Finally, we discuss the durability of the proposed coupler against the lateral displacement and angular misalignment of output waveguides.

© 2012 OSA

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(230.3120) Optical devices : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(250.5300) Optoelectronics : Photonic integrated circuits
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: June 29, 2012
Revised Manuscript: August 29, 2012
Manuscript Accepted: September 6, 2012
Published: September 11, 2012

Citation
H. Kurt, B. B. Oner, M. Turduev, and I. H. Giden, "Modified Maxwell fish-eye approach for efficient coupler design by graded photonic crystals," Opt. Express 20, 22018-22033 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22018


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Saleh and M. C. Teich, Fundamental of Photonics (Wiley-Interscience, 1991).
  2. N. Tzoar and R. Pascone, “Radiation loss in tapered waveguides,” J. Opt. Soc. Am. A71(9), 1107–1114 (1981). [CrossRef]
  3. D. W. Prather, J. Murakowski, S. Shi, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, “High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide,” Opt. Lett.27(18), 1601–1603 (2002). [CrossRef] [PubMed]
  4. A. Mekis and J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol.19(6), 861–865 (2001). [CrossRef]
  5. Ph. Lalanne and A. Talneau, “Modal conversion with artificial materials for photonic-crystal waveguides,” Opt. Express10(8), 354–359 (2002). [PubMed]
  6. M. Palamaru and Ph. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic mode conversion,” Appl. Phys. Lett.78(11), 1466–1468 (2001). [CrossRef]
  7. T. D. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Lett.26(14), 1102–1104 (2001). [CrossRef] [PubMed]
  8. E. Khoo, A. Liu, and J. Wu, “Nonuniform photonic crystal taper for high-efficiency mode coupling,” Opt. Express13(20), 7748–7759 (2005). [CrossRef] [PubMed]
  9. L. H. Gabrielli and M. Lipson, “Integrated Luneburg lens via ultra-strong index gradient on silicon,” Opt. Express19(21), 20122–20127 (2011). [CrossRef] [PubMed]
  10. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1964).
  11. H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett.19(19), 1532–1534 (2007). [CrossRef]
  12. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys.105(10), 103708 (2009). [CrossRef]
  13. H. T. Chien, C. Lee, H. K. Chiu, K. C. Hsu, C. C. Chen, J. A. Ho, and C. Chou, “The comparison between the graded photonic crystal coupler and various coupler,” J. Lightwave Technol.27(14), 2570–2574 (2009). [CrossRef]
  14. H. W. Wang and L. W. Chen, “High transmission efficiency of arbitrary waveguide bends formed by graded index photonic crystals,” J. Opt. Soc. Am. B28(9), 2098–2104 (2011). [CrossRef]
  15. E. Centeno, D. Cassagne, and J.-P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B73(23), 235119 (2006). [CrossRef]
  16. B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express18(19), 20321–20333 (2010). [CrossRef] [PubMed]
  17. B. Vasić and R. Gajić, “Self-focusing media using graded photonic crystals: focusing, fourier transforming and imaging, directive emission, and directional cloaking,” J. Appl. Phys.110(5), 053103 (2011). [CrossRef]
  18. F. Gaufillet and É. Akmansoy, “Graded photonic crystals for graded index lens,” Opt. Commun.285(10–11), 2638–2641 (2012). [CrossRef]
  19. E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and J.-M. Lourtioz, “Graded photonic crystals curve the flow of light: an experimental demonstration by the mirage effect,” Appl. Phys. Lett.92(13), 133501 (2008). [CrossRef]
  20. C. Tan, T. Niemi, C. Peng, and M. Pessa, “Focusing effect of a graded index photonic crystal lens,” Opt. Commun.284(12), 3140–3143 (2011). [CrossRef]
  21. E. Centeno, E. Akmansoy, K. Vynck, D. Cassagne, and J.-M. Lourtioz, “Light bending and quasi-transparency in metallic graded photonic crystals,” Photonics Nanostruct. Fundam. Appl.8(2), 120–124 (2010). [CrossRef]
  22. H. T. Chien and C. C. Chen, “Focusing of electromagnetic waves by periodic arrays of air holes with gradually varying radii,” Opt. Express14(22), 10759–10764 (2006). [CrossRef] [PubMed]
  23. M. Lu, B. K. Juluri, S.-C. S. Lin, B. Kiraly, T. Gao, and T. J. Huang, “Beam aperture modifier and beam deflector using gradient-index photonic crystals,” J. Appl. Phys.108(10), 103505 (2010). [CrossRef]
  24. H. Kurt and D. S. Citrin, “Graded index photonic crystals,” Opt. Express15(3), 1240–1253 (2007). [CrossRef] [PubMed]
  25. S. G. Lee, J. S. Choi, J. E. Kim, H. Y. Park, and C. S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express16(6), 4270–4277 (2008). [CrossRef] [PubMed]
  26. C. R. Pollock and M. Lipson, Integrated Photonics (Kluwer Academic Publishers, 2003).
  27. P. Sanchis, J. Marti, J. Blasco, A. Martinez, and A. Garcia, “Mode matching technique for highly efficient coupling between dielectric waveguides and planar photonic crystal circuits,” Opt. Express10(24), 1391–1397 (2002). [PubMed]
  28. T. Alder, A. Stöhr, R. Heinzelmann, and D. Jäger, “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photon. Technol. Lett.12(8), 1016–1018 (2000). [CrossRef]
  29. R. G. Hunsperger, A. Yariv, and A. Lee, “Parallel end-butt coupling for optical integrated circuits,” Appl. Opt.16(4), 1026–1032 (1977). [CrossRef] [PubMed]
  30. P. Sanchis, P. Bienstman, B. Luyssaert, R. Baets, and J. Marti, “Analysis of butt coupling in photonic crystals,” IEEE J. Quantum Electron.40(5), 541–550 (2004). [CrossRef]
  31. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publisher, 2005).
  32. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  33. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994). [CrossRef]
  34. C. A. Swainson and A. J. C. Maxwell), “Problems,” Cambridge Dublin Math. J.8, 188–189 (1854).
  35. A. D. Greenwood and J. M. Jin, “A field picture of wave propagation in inhomogeneous dielectric lenses,” IEEE Antenn. Propag. Mag.41(5), 9–18 (1999). [CrossRef]
  36. M. I. Kotlyar, Y. R. Triandaphilov, A. A. Kovalev, V. A. Soifer, M. V. Kotlyar, and L. O’Faolain, “Photonic crystal lens for coupling two waveguides,” Appl. Opt.48(19), 3722–3730 (2009). [CrossRef] [PubMed]
  37. R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, “High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Appl. Opt.39(31), 5773–5777 (2000). [CrossRef] [PubMed]
  38. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fiber and nanophotonic waveguides,” Jpn. J. Appl. Phys.45(8A), 6071–6077 (2006). [CrossRef]
  39. H. Kim, S. Lee, B. O. S. Park, and E. Lee, “High efficiency coupling technique for photonic crystal waveguides using a waveguide lens,” in Frontiers in Optics, OSA Technical Digest (Optical Society of America, 2003), paper MT68.
  40. E. Pshenay-Severin, C. C. Chen, T. Pertsch, M. Augustin, A. Chipoline, and A. Tunnermann, “Photonic crystal lens for photonic crystal waveguide coupling,” in Lasers and Electro-Optics Conference, Technical Digest (Optical Society of America, 2006), paper CthK3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited