OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22095–22101

Investigation of laser-induced damage by various initiators on the subsurface of fused silica

Xiang Gao, Guoying Feng, Jinghua Han, and Lingling Zhai  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22095-22101 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (796 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a model that describes the effect of size distribution of nanoabsorbers on the subsurface of fused silica on laser-damage probability. Using Mie theory and heat equation, we obtain the correlation between the critical fluence and particle radius. Considering a power law distribution of nanoabsorbers, the curves of laser-damage probability are calculated based on experimental results of contents of contaminations and a fit parameter of size distribution of nanoabsorbers. This paper presents the influence of various potential candidates, jointly, on laser-induced damage.

© 2012 OSA

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(310.3840) Thin films : Materials and process characterization
(320.4240) Ultrafast optics : Nanosecond phenomena

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 29, 2012
Revised Manuscript: September 2, 2012
Manuscript Accepted: September 7, 2012
Published: September 12, 2012

Xiang Gao, Guoying Feng, Jinghua Han, and Lingling Zhai, "Investigation of laser-induced damage by various initiators on the subsurface of fused silica," Opt. Express 20, 22095-22101 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Kozlowski, J. Carr, I. D. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998). [CrossRef]
  2. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005). [CrossRef] [PubMed]
  3. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  4. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009). [CrossRef]
  5. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010). [CrossRef] [PubMed]
  6. S. Papernov, A. W. Schmid, R. Krishnan, and L. Tsybeskov, “Using colloidal gold nanoparticles for studies of laser interaction with defects in thin films,” Proc. SPIE 4347, 146–154 (2001). [CrossRef]
  7. F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignere, M. Loiseau, and J. T. Donohue, “Study of UV laser interaction with gold nanoparticles embedded in silica,” J. Appl. Phys. 75(8), 803–815 (2002). [CrossRef]
  8. S. Papernov and A. W. Schmid, “Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation,” J. Appl. Phys. 92(10), 5720–5728 (2002). [CrossRef]
  9. P. Jonnard, G. Dufour, J. L. Rullier, J. P. Morreeuw, and J. Donohue, “Surface density enhancement of gold in silica film under laser irradiation at 355 nm,” Appl. Phys. Lett. 85(4), 591–593 (2004). [CrossRef]
  10. J. Y. Natoli, L. Gallais, B. Bertussi, A. During, M. Commandre, J. L. Rullier, F. Bonneau, and P. Combis, “Localized pulsed laser interaction with submicronic gold particles embedded in silica: a method for investigating laser damage initiation,” Opt. Express 11(7), 824–829 (2003). [CrossRef] [PubMed]
  11. R. Hopper and D. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41(10), 4023–4037 (1970). [CrossRef]
  12. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74–82 (2004). [CrossRef]
  13. M. J. Weber, Handbook of Optical Materials (CRC, 2002).
  14. H. C. Hulst, Light Scattering by Small Particles (Wiley, 1957).
  15. X. Gao, G. Y. Feng, J. H. Han, N. J. Chen, C. Tang, and S. H. Zhou, “Investigation of laser-induced damage by nanoabsorbers at the surface of fused silica,” Appl. Opt. 51(13), 2463–2468 (2012). [CrossRef] [PubMed]
  16. C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010). [CrossRef]
  17. J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41(16), 3156–3166 (2002). [CrossRef] [PubMed]
  18. H. Krol, L. Gallais, C. Grezes-Besset, J. Y. Natoli, and M. Commandre, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1–3), 184–189 (2005). [CrossRef]
  19. J. B. Trenholme, M. D. Feit, and A. M. Rubenchik, “Size-selection initiation model extended to include shape and random factors,” Proc. SPIE 5991, 325–336 (2005). [CrossRef]
  20. L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited