OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22181–22187

Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities

Andrew Lee, Qi Jiang, Mingchu Tang, Alwyn Seeds, and Huiyun Liu  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22181-22187 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1272 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first room-temperature continuous-wave operation of III-V quantum-dot laser diodes monolithically grown on a Si substrate. Long-wavelength InAs/GaAs quantum-dot structures were fabricated on Ge-on-Si substrates. Room-temperature lasing at a wavelength of 1.28 μm has been achieved with threshold current densities of 163 A/cm2 and 64.3 A/cm2 under continuous-wave and pulsed conditions for ridge-waveguide lasers with as cleaved facets, respectively. The value of 64.3 A/cm2 represents the lowest room-temperature threshold current density for any kind of laser on Si to date.

© 2012 OSA

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:

Original Manuscript: July 23, 2012
Revised Manuscript: August 28, 2012
Manuscript Accepted: August 29, 2012
Published: September 12, 2012

Andrew Lee, Qi Jiang, Mingchu Tang, Alwyn Seeds, and Huiyun Liu, "Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities," Opt. Express 20, 22181-22187 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006). [CrossRef]
  2. R. Won, “Integrating silicon photonics,” Nat. Photonics4(8), 498–499 (2010). [CrossRef]
  3. D. Liang and J. E. Bowers, “Recent progress in lasers on Si,” Nat. Photonics4(8), 511–517 (2010). [CrossRef]
  4. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  5. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetector,” Nat. Photonics4(8), 527–534 (2010). [CrossRef]
  6. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics5(7), 416–419 (2011). [CrossRef]
  7. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  8. R. Chen, T. D. Tran, K. Ng, W. Ko, L. Chuang, F. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011). [CrossRef]
  9. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005). [CrossRef] [PubMed]
  10. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express20(10), 11316–11320 (2012). [CrossRef] [PubMed]
  11. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express15(5), 2315–2322 (2007). [CrossRef] [PubMed]
  12. M. Groenert, A. Pitera, R. Ram, and E. Fitzgerald, “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs laser fabricated on Si substrates via relaxed graded GexSi1-x buffer layers,” J. Vac. Sci. Technol. B21(3), 1064–1069 (2003). [CrossRef]
  13. R. Fischer, W. Masselink, J. Klem, T. Henderson, T. McGlinn, M. Klein, H. Morkoc, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys.58(1), 374–381 (1985). [CrossRef]
  14. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express19(12), 11381–11386 (2011). [CrossRef] [PubMed]
  15. T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, “Germanium-on-insulator (GeOI) substrates – A novel engineered substrate for future high performance devices,” Mater. Sci. Semicond. Process.9(4–5), 444–448 (2006). [CrossRef]
  16. M. Currie, S. Samavedam, T. Langdo, C. Leitz, and E. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett.72(14), 1718–1720 (1998). [CrossRef]
  17. G. Brammertz, M. Caymax, M. Meuris, M. Heyns, Y. Mols, S. Degroote, and M. Leys, “GaAs on Ge for CMOS,” Thin Solid Films517(1), 148–151 (2008). [CrossRef]
  18. M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics3(1), 30–31 (2009). [CrossRef]
  19. R. Beanland, A. Sanchez, D. Childs, K. M. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys.103(1), 014913 (2008). [CrossRef]
  20. I. Sellers, H. Liu, K. Groom, D. Childs, D. Robbins, T. Badcock, M. Hopkinson, D. Mowbray, and M. Skolnick, “1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett.40(22), 1412–1413 (2004). [CrossRef]
  21. D. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett.45(1), 54–55 (2009). [CrossRef]
  22. H. Liu, I. Sellers, T. Badcock, D. Mowbray, M. Skolnick, K. Groom, M. Gutierrez, M. Hopkinson, J. Ng, J. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers usinga high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett.85(5), 704–706 (2004). [CrossRef]
  23. H. Tanoto, S. F. Yoon, K. L. Lew, W. K. Loke, C. Dohrman, E. A. Fitzgerald, and L. J. Tang, “Electroluminescence and structural characteristics of InAs/In0.1Ga0.9As quantum dots grown on graded Si1−xGex/Si substrate,” Appl. Phys. Lett.95(14), 141905 (2009). [CrossRef]
  24. D. Bordel, D. Guimard, M. Rajesh, M. Nishioka, E. Augendre, L. Clavelier, and Y. Arakawa, “Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band,” Appl. Phys. Lett.96(4), 043101 (2010). [CrossRef]
  25. T. Wang, A. Lee, F. Tutu, A. Seeds, H. Liu, Q. Jiang, K. Groom, and R. Hogg, “The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates,” Appl. Phys. Lett.100(5), 052113 (2012). [CrossRef]
  26. H. Liu, M. Hopkinson, C. Harrison, M. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys.93(5), 2931–2936 (2003). [CrossRef]
  27. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012.)
  28. J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev.54(11), 2849–2855 (2007). [CrossRef]
  29. C. Jin, T. Badcock, H. Liu, K. Groom, R. Royce, D. Mowbray, and M. Hopkinson, “Observation and modelling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser,” IEEE J. Quantum Electron.42(12), 1259–1265 (2006). [CrossRef]
  30. T. Badcock, R. Royce, D. Mowbray, M. Skolnick, H. Liu, M. Hopkinson, K. Groom, and Q. Jiang, “Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers,” Appl. Phys. Lett.90(11), 111102 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited