OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22531–22536

Fabrication and characterization of suspended SiO2 ridge optical waveguides and the devices

Pengxin Chen, Yunpeng Zhu, Yaocheng Shi, Daoxin Dai, and Sailing He  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22531-22536 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1606 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Novel suspended SiO2 ridge optical waveguides on silicon are fabricated and characterized. The present suspended SiO2 ridge optical waveguide has a SiO2 ridge core surrounded by air. The propagation loss and the bend loss measured are about 0.385dB/cm and 0.037dB/90° respectively for the fabricated 1μm-wide waveguides with a bending radius of 100μm when operating at the wavelength of 1550 nm. With the present suspended SiO2 optical waveguides, a small racetrack resonator with a radius of 100μm is also demonstrated and the measured Q-factor is about 3160.

© 2012 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Optical Devices

Original Manuscript: June 13, 2012
Revised Manuscript: August 23, 2012
Manuscript Accepted: September 6, 2012
Published: September 17, 2012

Pengxin Chen, Yunpeng Zhu, Yaocheng Shi, Daoxin Dai, and Sailing He, "Fabrication and characterization of suspended SiO2 ridge optical waveguides and the devices," Opt. Express 20, 22531-22536 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008). [CrossRef] [PubMed]
  2. T. Miya, “Silica-based planar lightwave circuits: passive and thermally active devices,” IEEE J. Sel. Top. Quantum Electron. 6(1), 38–45 (2000). [CrossRef]
  3. M. R. Poulsen, P. I. Borel, J. Fage-Pedersen, J. Hubner, M. Kristensen, J. H. Povlsen, K. Rottwitt, M. Svalgaard, and W. Svendsen, “Advances in silica-based integrated optics,” Opt. Eng. 42(10), 2821–2834 (2003). [CrossRef]
  4. Z. Sheng, B. Yang, L. Yang, J. Hu, D. Dai, and S. He, “Experimental demonstration of deeply-etched SiO2 ridge optical waveguides and devices,” IEEE J. Quantum Electron. 46(1), 28–34 (2010). [CrossRef]
  5. D. Dai and Y. Shi, “Deeply etched SiO2 ridge waveguide for sharp bends,” J. Lightwave Technol. 24(12), 5019–5024 (2006). [CrossRef]
  6. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004). [CrossRef] [PubMed]
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  8. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007). [CrossRef] [PubMed]
  9. T. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003). [CrossRef]
  10. T. H. Stievater, W. S. Rabinovich, D. Park, J. B. Khurgin, S. Kanakaraju, and C. J. K. Richardson, “Low-loss suspended quantum well waveguides,” Opt. Express 16(4), 2621–2627 (2008). [CrossRef] [PubMed]
  11. B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightwave Technol. 27(18), 4091–4096 (2009). [CrossRef]
  12. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Ichi Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
  13. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]
  14. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for highsensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008). [CrossRef] [PubMed]
  15. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010). [CrossRef] [PubMed]
  16. M. Popovic, K. Wada, S. Akiyama, H. A. Haus, and J. Michel, “Air trenches for sharp silica waveguide bends,” J. Lightwave Technol. 20(9), 1762–1772 (2002). [CrossRef]
  17. L. Martinez and M. Lipson, “High confinement suspended micro-ring resonators in silicon-on-insulator,” Opt. Express 14(13), 6259–6263 (2006). [CrossRef] [PubMed]
  18. M. Garrigues, J. Danglot, J.-L. Leclercq, and O. Parillaud, “Tunable high-finesse InP/air MOEMs filter,” IEEE Photon. Technol. Lett. 17(7), 1471–1473 (2005). [CrossRef]
  19. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [CrossRef] [PubMed]
  20. K. Watanabe, Y. Hashizume, Y. Nasu, M. Kohtoku, M. Itoh, and Y. Inoue, “Ultralow power consumption silica-based PLC-VOA/switches,” J. Lightwave Technol. 26(14), 2235–2244 (2008). [CrossRef]
  21. L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: A review,” J. Vac. Sci. Technol. 18(6), 2619–2645 (2000). [CrossRef]
  22. A. Kilian, J. Kirchof, B. Kuhlow, G. Przyrembel, and W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition (FHD) through tailoring of the overcladding,” J. Lightwave Technol. 18(2), 193–198 (2000). [CrossRef]
  23. E. Kobeda and E. A. Irene, “Intrinsic SiO2 film stress measurements on thermally oxidized Si,” J. Vac. Sci. Technol. B 5(1), 15–19 (1987). [CrossRef]
  24. S. Chu, B. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11(6), 691–693 (1999). [CrossRef]
  25. D. Dai and S. He, “Proposal of a coupled-microring-based wavelength-selective 1×N power splitter,” IEEE Photonic. Tech. L. 21(21), 1630–1632 (2009). [CrossRef]
  26. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited