OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22675–22682

Particle-wave duality in quantum tunneling of a bright soliton

Ching-Hao Wang, Tzay-Ming Hong, Ray-Kuang Lee, and Daw-Wei Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22675-22682 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1009 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One of the most fundamental difference between classical and quantum mechanics is observed in the particle tunneling through a localized potential: the former predicts a discontinuous transmission coefficient (T) as a function in incident velocity between one (complete penetration) and zero (complete reflection); while in the latter T always changes smoothly with a wave nature. Here we report a systematic study of the quantum tunneling property for a bright soliton, which behaves as a classical particle (wave) in the limit of small (large) incident velocity. In the intermediate regime, the classical and quantum properties are combined via a finite (but not full) discontinuity in the tunneling transmission coefficient. We demonstrate that the formation of a localized bound state is essential to describe such inelastic collisions, showing a nontrivial nonlinear effect on the quantum transportation of a bright soliton.

© 2012 OSA

OCIS Codes
(020.1335) Atomic and molecular physics : Atom optics
(020.1475) Atomic and molecular physics : Bose-Einstein condensates
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Atomic and Molecular Physics

Original Manuscript: June 21, 2012
Revised Manuscript: August 17, 2012
Manuscript Accepted: September 4, 2012
Published: September 19, 2012

Ching-Hao Wang, Tzay-Ming Hong, Ray-Kuang Lee, and Daw-Wei Wang, "Particle-wave duality in quantum tunneling of a bright soliton," Opt. Express 20, 22675-22682 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Paul, P. Schlagheck, P. Leboeuf, and N. Pavloff, “Superfluidity versus Anderson Localization in a dilute Bose gas,” Phys. Rev. Lett. 98, 210602(1–4) (2007). [CrossRef]
  2. L. Fallani, J. E. Lye, V. Guarrera, C. Fort, and M. Inguscio, “Ultracold atoms in a disordered crystal of light: Towards a Bose glass,” Phys. Rev. Lett. 98, 130404(1–4) (2007). [CrossRef] [PubMed]
  3. C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, 2008). [CrossRef]
  4. C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, and M. Inguscio, “Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide,” Phys. Rev. Lett. 95, 170410(1–4) (2005). [CrossRef] [PubMed]
  5. Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic, 2003).
  6. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, “Formation of a matter-wave bright soliton,” Science 296, 1290–1293 (2002). [CrossRef] [PubMed]
  7. D. J. Griffiths, Introduction to Quantum Mechanics (Pearson Prentice Hall, 2005).
  8. Y. S. Kivshar and B. A. Malomed, “Dynamics of solitons in nearly integrable systems,” Rev. Mod. Phys. 61, 763–915 (1989). [CrossRef]
  9. H. Sakaguchi and M. Tamura, “Scattering of solitons and dark solitons by potential walls in the nonlinear Schrödinger equation,” J. Phys. Soc. Jpn. 74, 292–298 (2005). [CrossRef]
  10. C. Lee and J. Brand, “Enhanced quantum reflection of matter-wave solitons,” Europhys. Lett. 73, 321–327 (2006). [CrossRef]
  11. T. Ernst and J. Brand, “Resonant trapping in the transport of a matter-wave soliton through a quantum well,” Phys. Rev. A 81, 033614 (2010). [CrossRef]
  12. J. A. González, A. Bellorín, and L. E. Guerrero, “Soliton tunneling with sub-barrier kinetic energies,” Phys. Rev E 60, R37–R40 (2009). [CrossRef]
  13. G. Kälbermann, “Soliton interacting as a particle,” Phys. Lett. A 252, 37–42 (1999). [CrossRef]
  14. G. Kälbermann, “Soliton tunneling,” Phys. Rev. E 55, R6360–R6362 (1999).
  15. A. Barak, O. Peleg, C. Stucchio, A. Soffer, and M. Segev, “Observation of soliton tunneling phenomena and soliton ejection,” Phys. Rev. Lett. 100, 153901(1–4) (2008). [CrossRef]
  16. J. L. Helm, T. P. Billam, and S. A. Gardine, “Bright matter-wave soliton collisions at narrow barriers,” Phys. Rev. A 85, 053621 (2012). [CrossRef]
  17. B. Gertjerenken, T. P. Billam, L. Khaykovich, and C. Weiss, “Scattering bright solitons: quantum versus mean-field behavior,” arXiv:1208.2941v2 (2012).
  18. X. D. Cao and B. A. Malomed, “Soliton-defect collisions in the nonlinear Schrödinger equation,” Phys. Lett. A 206, 177–182 (1995). [CrossRef]
  19. S. Burtsev, D. J. Kaup, and B. A. Malomed, “Interaction of solitons with a strong inhomogeneity in a nonlinear optical fiber,” Phys. Rev. E 52, 4474–4481 (1995). [CrossRef]
  20. R. H. Goodman, P. J. Holmes, and M. I. Weinstein, “Strong NLS soliton defect interactions,” Physica D 192, 215–248 (2004). [CrossRef]
  21. Y. Linzon, R. Morandotti, M. Volatier, V. Aimez, R. Ares, and S. Bar-Ad, “Nonlinear scattering and trapping by local photonic potentials,” Phys. Rev. Lett. 99, 133901(1–4) (2007). [CrossRef]
  22. C. P. Jisha, A. Alberucci, R.-K. Lee, and G. Assanto, “Optical solitons and wave-particle duality,” Opt. Lett. 36, 1848–1850 (2011). [CrossRef] [PubMed]
  23. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463–512 (1999). [CrossRef]
  24. J. Holmer, J. Marzuola, and M. Zworski, “Fast soliton scattering by delta impurities,” Comm. Math. Phys. 274, 187–216 (2007) [CrossRef]
  25. J. Holmer and M. Zworski, “Slow soliton interaction with delta impurities,” J. Modern Dynamics 1, 689–718 (2007). [CrossRef]
  26. V. Hakim, “Nonlinear Schrödinger flow past an obstacle in one dimension,” Phys. Rev. E 55, 2835–2845 (1997). [CrossRef]
  27. N. Pavloff, “Breakdown of superfluidity of an atom laser past an obstacle,” Phys. Rev. A 66, 013610(1–8) (2002). [CrossRef]
  28. B. Seaman, L. D. Carr, and M. J. Holland, “Effect of a potential step or impurity on the Bose-Einstein condensate mean field”, Phys. Rev. A 71, 033609(1–10) (2005). [CrossRef]
  29. D. Witthaut, S. Mossmann, and H. J. Korsch, “Bound and resonance states of the nonlinear Schrödinger equation in simple model systems,” J. Phys. A: Math. Gen. 38, 1777–1792 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited