OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22743–22752

Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands

Ryo Terawaki, Yasushi Takahashi, Masahiro Chihara, Yoshitaka Inui, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22743-22752 (2012)
http://dx.doi.org/10.1364/OE.20.022743


View Full Text Article

Acrobat PDF (1747 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied the feasibility of extending the operating wavelength range of high-Q silicon nanocavities above and below the 1.55 μm wavelength band, while maintaining Q factors of more than one million. We have succeeded in developing such nanocavities in the optical telecommunication bands from 1.27 μm to 1.50 μm. Very high Q values of more than two million were obtained even for the 1.30 μm band. The Q values increase proportionally to the resonant wavelength because the scattering loss decreases. We have also analyzed the influence of absorption due to surface water. We conclude that high-Q nanocavities are feasible for an even wider wavelength region including parts of the mid-infrared.

© 2012 OSA

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 23, 2012
Revised Manuscript: September 4, 2012
Manuscript Accepted: September 16, 2012
Published: September 19, 2012

Citation
Ryo Terawaki, Yasushi Takahashi, Masahiro Chihara, Yoshitaka Inui, and Susumu Noda, "Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands," Opt. Express 20, 22743-22752 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22743


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  2. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-High-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005). [CrossRef]
  3. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express17(20), 18093–18102 (2009). [CrossRef] [PubMed]
  4. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000). [CrossRef] [PubMed]
  5. H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express14(8), 3491–3496 (2006). [CrossRef] [PubMed]
  6. B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008). [CrossRef]
  7. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factors in a photonic crystal nanocavity,” Nat. Mater.6(11), 862–865 (2007). [CrossRef] [PubMed]
  8. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics2(12), 741–747 (2008). [CrossRef]
  9. J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express19(23), 23377–23385 (2011). [CrossRef] [PubMed]
  10. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics6(1), 56–61 (2011). [CrossRef]
  11. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96(10), 101103 (2010). [CrossRef]
  12. L. D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. De Rossi, “All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength,” Opt. Express18(23), 23965–23972 (2010). [CrossRef] [PubMed]
  13. A. Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94(6), 063503 (2009). [CrossRef]
  14. T. W. Lu, P. T. Lin, K. U. Sio, and P. T. Lee, “Optical sensing of square lattice photonic crystal point-shifted nanocavity for protein adsorption detection,” Appl. Phys. Lett.96(21), 213702 (2010). [CrossRef]
  15. S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Photonic crystal nanolaser biosensors,” IEICE Trans. Electron.E 95C, 188–198 (2012).
  16. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15(12), 7506–7514 (2007). [CrossRef] [PubMed]
  17. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6(4), 279–283 (2010). [CrossRef]
  18. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantumdot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011). [CrossRef]
  19. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express20(4), 3773–3780 (2012). [CrossRef] [PubMed]
  20. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005). [CrossRef] [PubMed]
  21. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett.96(11), 117401 (2006). [CrossRef] [PubMed]
  22. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007). [CrossRef]
  23. S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett.91(21), 211104 (2007). [CrossRef]
  24. X. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express15(8), 4763–4780 (2007). [CrossRef] [PubMed]
  25. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004). [CrossRef] [PubMed]
  26. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007). [CrossRef] [PubMed]
  27. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science320(5877), 769–772 (2008). [CrossRef] [PubMed]
  28. Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express19(12), 11916–11921 (2011). [CrossRef] [PubMed]
  29. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006). [CrossRef]
  30. S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, “High-Q cavities in multilayer photonic crystal slabs,” Opt. Express15(25), 17248–17253 (2007). [CrossRef] [PubMed]
  31. S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide,” Opt. Express16(7), 4605–4614 (2008). [CrossRef] [PubMed]
  32. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009). [CrossRef]
  33. A. Yokoo, T. Tanabe, E. Kuramochi, and M. Notomi, “Ultrahigh-Q nanocavities written with a nanoprobe,” Nano Lett.11(9), 3634–3642 (2011). [CrossRef] [PubMed]
  34. B. S. Song, S. W. Jeon, and S. Noda, “Symmetrically glass-clad photonic crystal nanocavities with ultrahigh quality factors,” Opt. Lett.36(1), 91–93 (2011). [CrossRef] [PubMed]
  35. G. Davies, “The optical properties of luminescence centers in silicon,” Phys. Rep.176(3-4), 83–188 (1989). [CrossRef]
  36. H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics2(3), 170–174 (2008). [CrossRef]
  37. V. Alex, S. Finkbeiner, and J. Weber, “Temperature dependence of the indirect energy gap in crystalline silicon,” J. Appl. Phys.79(9), 6943–6946 (1996). [CrossRef]
  38. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B79(8), 085112 (2009). [CrossRef]
  39. W. Kern and D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev.31, 187–206 (1970).
  40. K. Yamamoto, A. Nakamura, and Y. Hase, “Control of cleaning performance of an ammonia and hydrogen peroxide mixture (APM) on the basis of a kinetic reaction model,” IEEE Trans. Semicond. Manuf.12(3), 288–294 (1999). [CrossRef]
  41. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express15(25), 17206–17213 (2007). [CrossRef] [PubMed]
  42. Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “Higher-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett.92(24), 241910 (2008). [CrossRef]
  43. Z. Han, X. Checoury, D. Neel, S. David, M. E. Kurdi, and P. Boucaud, “Optimized design for 2×106 ultra-high Q silicon photonic crystal cavities,” Opt. Commun.283(21), 4387–4391 (2010). [CrossRef]
  44. M. Notomi, “Strong light confinement with periodicity,” Proc. IEEE99(10), 1768–1779 (2011). [CrossRef]
  45. A. Shinya, S. Matsuo, T. Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16(23), 19382–19387 (2008). [CrossRef] [PubMed]
  46. M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D. Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett.34(23), 3671–3673 (2009). [CrossRef] [PubMed]
  47. X. Gai, B. Luther-Davies, and T. P. White, “Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000),” Opt. Express20(14), 15503–15515 (2012). [CrossRef] [PubMed]
  48. R. Herrmann, T. Sünner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, “Ultrahigh-quality photonic crystal cavity in GaAs,” Opt. Lett.31(9), 1229–1231 (2006). [CrossRef] [PubMed]
  49. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett.109(3), 033604 (2012). [CrossRef] [PubMed]
  50. S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett.99(20), 201102 (2011). [CrossRef]
  51. N. V. Trivino, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J. F. Carlin, K. A. Atlasov, R. Butte, R. Houdre, and N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett.100(7), 071103 (2012). [CrossRef]
  52. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10(10), 3922–3926 (2010). [CrossRef] [PubMed]
  53. M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Lončar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett.36(3), 421–423 (2011). [CrossRef] [PubMed]
  54. D. Sam-Giao, D. Neel, S. Sergent, B. Gayral, M. J. Rashid, F. Semond, J. Y. Duboz, M. Mexis, T. Guillet, C. Brimont, S. David, X. Checoury, and P. Boucaud, “High quality factor AlN nanocavities embedded in a photonic crystal waveguide,” Appl. Phys. Lett.100(19), 191104 (2012). [CrossRef]
  55. S. Sergent, M. Arita, S. Kako, S. Iwamoto, and Y. Arakawa, “High-Q (>5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett.100(12), 121103 (2012). [CrossRef]
  56. T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express14(5), 1996–2002 (2006). [CrossRef] [PubMed]
  57. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids vol. 1 E. D. Palik, ed. (Academic Press, 1985).
  58. M. R. Querry, D. M. Wieliczka, and D. J. Segelstein, “Water (H20),” in Handbook of Optical Constants of Solids vol. 2 E. D. Palik, ed. (Academic Press, 1991).
  59. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt.32(19), 3531–3540 (1993). [CrossRef] [PubMed]
  60. L. G. Weyer and S. C. Lo, “Spectra-Structure Correlations in the Near-infrared,” in Handbook of Vibrational Spectroscopy vol. 3 J. M. Chalmers and P. R. Griffiths, ed. (Wiley, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited