OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22796–22812

Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics

Kazuhiro Kurokawa, Kazuhiro Sasaki, Shuichi Makita, Young-Joo Hong, and Yoshiaki Yasuno  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22796-22812 (2012)
http://dx.doi.org/10.1364/OE.20.022796


View Full Text Article

Enhanced HTML    Acrobat PDF (4333 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Retinal and choroidal vascular imaging is a key to the better understanding and diagnosis of eye diseases. To achieve comprehensive three-dimensional capillary imaging, we used an enhanced vascular imaging technique, so called adaptive optics optical coherence angiography (AO-OCA). AO-OCA enables in vivo high-resolution and high-contrast micro-vascular imaging by detecting Doppler frequency shifts. Using this technique, the retinal and choroidal vasculatures of healthy subjects were imaged. The results show that both intensity and Doppler power images have sufficient contrast to discriminate almost all vasculatures from the static tissue. However, the choriocapillaris, pre-arterioles, and post-venules in the Sattler layer were more contrasted by the Doppler technique. In conclusion, AO-OCA enables three-dimensional capillary imaging, and is especially useful for the detection of the choriocapillaris and choroidal capillary network.

© 2012 OSA

OCIS Codes
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 5, 2012
Revised Manuscript: September 4, 2012
Manuscript Accepted: September 14, 2012
Published: September 20, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Kazuhiro Kurokawa, Kazuhiro Sasaki, Shuichi Makita, Young-Joo Hong, and Yoshiaki Yasuno, "Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics," Opt. Express 20, 22796-22812 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22796


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Albert Alm, “Circulation,” in Adler’s Physiology of the Eye, P. L. Kaufman and A. Alm, eds. (Mosby, 2002), pp.747–784. [PubMed]
  2. J. Flammer, S. Orgül, V. P Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002), http://www.sciencedirect.com/science/article/pii/S1350946202000083 . [CrossRef] [PubMed]
  3. M. A. Zarbin, “Current concepts in the pathogenesis of age-related macular degeneration,” Archives of Ophthalmology122(4), 598–614 (2004), http://www.ncbi.nlm.nih.gov/pubmed/15078679 . [CrossRef] [PubMed]
  4. C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye. Res.27(3), 284–330 (2008), http://www.sciencedirect.com/science/article/pii/S135094620800013X . [CrossRef] [PubMed]
  5. R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature438(7070), 960–966 (2005), http://www.nature.com/nature/journal/v438/n7070/full/nature04482.html . [CrossRef] [PubMed]
  6. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986), http://www.ncbi.nlm.nih.gov/pubmed/3523356 . [PubMed]
  7. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8127574 . [PubMed]
  8. D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging36(1), 57–66 (2005). [PubMed]
  9. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002). [PubMed]
  10. J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology112(12), 2219–2224 (2005), http://www.sciencedirect.com/science/article/pii/S0161642005009115 . [CrossRef] [PubMed]
  11. Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express16(17), 12746–12756 (2008). [CrossRef] [PubMed]
  12. J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010), http://www.iovs.org/content/51/3/1691 . [CrossRef]
  13. J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(4), 781–793 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-781 . [CrossRef] [PubMed]
  14. J. Tam and A. Roorda, “Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy,” J. Biomed. Opt.16(3), 036002 (2011), http://dx.doi.org/10.1117/1.3548880 . [CrossRef] [PubMed]
  15. Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, L. Benno, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.52(7), 4151–4157 (2011), http://www.iovs.org/content/52/7/4151.abstract . [CrossRef] [PubMed]
  16. M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye (W.B. Saunders Company, 1971).
  17. Shinya Inoué, “Foundations of confocal scanned imaging in light microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Springer, 1995), pp. 1–14.
  18. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 . [CrossRef] [PubMed]
  19. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett.17(2), 151–153 (1992), http://ol.osa.org/abstract.cfm?URI=ol-17-2-151 . [CrossRef] [PubMed]
  20. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett.28(19), 1745–1747 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-19-1745 . [CrossRef] [PubMed]
  21. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-5-480 . [CrossRef] [PubMed]
  22. B. Cense, N. Nassif, T. Chen, M. Pierce, S. Yun, B. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004). [CrossRef] [PubMed]
  23. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27 (1), 45–88 (2008). http://www.sciencedirect.com/science/article/pii/S1350946207000444 . [CrossRef]
  24. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  25. X. J. Wang, T. E. Milner, and J. S. Nelson. “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Letters20(11), 1337–1339 (1995), http://ol.osa.org/abstract.cfm?URI=ol-20-11-1337 . [CrossRef]
  26. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett.25(19), 1448–1450 (2000), http://ol.osa.org/abstract.cfm?URI=ol-25-19-1448 . [CrossRef]
  27. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003). [CrossRef] [PubMed]
  28. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003). [CrossRef] [PubMed]
  29. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. Stuart Nelson. “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000) http://ol.osa.org/abstract.cfm?URI=ol-25-2-114 . [CrossRef]
  30. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express17(26), 23736–23754 (2009). [CrossRef]
  31. L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013–106013-9 (2011), http://link.aip.org/link/?JBO/16/106013/1 . [CrossRef] [PubMed]
  32. Y. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno. “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express20(3), 2740–2760 (2012). [CrossRef] [PubMed]
  33. J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express13(14), 5234–5239 (2005). [CrossRef] [PubMed]
  34. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2009), http://ol.osa.org/abstract.cfm?URI=ol-33-13-1530 . [CrossRef]
  35. R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express3(3), 503–521 (2012), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-3-503 . [CrossRef] [PubMed]
  36. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express20(4), 4710–4725 (2012). [CrossRef] [PubMed]
  37. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express17(24), 22190–22200 (2009). [CrossRef] [PubMed]
  38. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun.242, 345–350 (2004). http://www.sciencedirect.com/science/article/B6TVF-4D8F6KC-1/2/248c1c0c32a9be950faa5260ae275c0e . [CrossRef]
  39. G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express19(4), 3657–3666 (2011). [CrossRef] [PubMed]
  40. S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011). [CrossRef] [PubMed]
  41. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011). [CrossRef] [PubMed]
  42. B. Hermann, E. J. Fernández, A. Unterhuder, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(18), 2142–2144 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-18-2142 . [CrossRef] [PubMed]
  43. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A24(5), 1373–1383 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1373 . [CrossRef]
  44. D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008), http://dx.doi.org/10.1167/iovs.07-1228 . [CrossRef] [PubMed]
  45. Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci.52(9), 6292–6299 (2011), http://www.iovs.org/content/early/2011/01/17/iovs.10-6424.abstract . [CrossRef] [PubMed]
  46. R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics–optical coherence tomography,” Opt. Express17(5), 4084–4094 (2009). [CrossRef] [PubMed]
  47. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express2(4), 748–763 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-748 . [CrossRef] [PubMed]
  48. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express18(8), 8515–8527 (2010). [CrossRef] [PubMed]
  49. K. Sasaki, K. Kurokawa, S. Makita, and Y. Yasuno, “Extended depth of focus adaptive optics spectral domain optical coherence tomography,” Biomed. Opt. Express3(10), 2353–2370 (2012). [CrossRef]
  50. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express14(13) 6213–6225 (2006). [CrossRef] [PubMed]
  51. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008). [CrossRef] [PubMed]
  52. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express2(6), 1674–1686 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-6-1674 . [CrossRef] [PubMed]
  53. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005). [CrossRef] [PubMed]
  54. L. Chen, “Control algorithms,” in Adaptive Optics for Vision Science: Principles, Practices, Design and Applications, J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, eds. (Wiley-Interscience, 2006).
  55. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006). [CrossRef] [PubMed]
  56. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15) 11438–11452 (2008). [CrossRef] [PubMed]
  57. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography,” Opt. Express17(13), 10584–10598 (2009). [CrossRef] [PubMed]
  58. S. H. Yun, G. Tearney, J. F. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12(13), 2977–2998 (2004). [CrossRef] [PubMed]
  59. J. Walther, A Krüger, M. Cuevas, and E. Koch, “Effects of axial, transverse, and oblique sample motion in FD OCT in systems with global or rolling shutter line detector,” J. Opt. Soc. A. A25(11), 2791–2802 (2008), http://josaa.osa.org/abstract.cfm?URI=josaa-25-11-2791 . [CrossRef]
  60. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express13(11), 3931–3944 (2005). [CrossRef] [PubMed]
  61. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13(2), 024008–024008-7 (2008), http://link.aip.org/link/?JBO/13/024008/1 . [CrossRef] [PubMed]
  62. D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci.12(4), 1169–1193 (1992). [PubMed]
  63. S. Yoneya and M. O. M Tso, “Angioarchitecture of the human choroid,” Arch. Ophthalmol.105(5), 681–687 (1987), http://archopht.ama-assn.org/cgi/content/abstract/105/5/681 . [CrossRef] [PubMed]
  64. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” IOVS46(6), 2012–2017 (2005), http://dx.doi.org/10.1167/iovs.04-0335 .
  65. T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express17(18), 15659–15669 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-18-15659 . [CrossRef] [PubMed]
  66. S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express3(5), 1127–1140 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19413 . [CrossRef] [PubMed]
  67. V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express18(14), 14730–14744 (2010). [CrossRef]
  68. Z136 Committee, American National Standard for Safe Use of Lasers: ANSI Z136.1-2000 (Laser Institute of America, 2003).
  69. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3044 . [CrossRef] [PubMed]
  70. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M–82130M-8 (2012). [CrossRef]
  71. S. S. Hayreh, “The choriocapillaris,” Graefe’s Archive for Clinical and Experimental Ophthalmology192(3), 165–179 (1974), http://dx.doi.org/10.1007/BF00416864 . [PubMed]
  72. R. W. Flower, A. W. Fryczkowski, and D. S. McLeod, “Variability in choriocapillaris blood flow distribution,” Invest. Ophthalmol. Vis. Sci.36(7), 1247–1258 (1995), http://www.ncbi.nlm.nih.gov/pubmed/7775102 . [PubMed]
  73. R. W. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci.49(12), 5510–5516 (2008), http://www.iovs.org/content/49/12/5510.long . [CrossRef] [PubMed]
  74. C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. Kurt Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express17(22), 19382–19400 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3601 KB)      QuickTime
» Media 2: AVI (3070 KB)      QuickTime
» Media 3: AVI (1568 KB)      QuickTime
» Media 4: AVI (1447 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited