OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22872–22877

Wavelength tunable infrared light source based on semiconductor-integrated liquid crystal filter

Yu-Hsin Yao, Chun-Ta Wang, Rui-Ren Chen, Hung-Chang Jau, Yi-Jen Chiu, and Tsung-Hsien Lin  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22872-22877 (2012)
http://dx.doi.org/10.1364/OE.20.022872


View Full Text Article

Enhanced HTML    Acrobat PDF (1142 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work proposes an electrically tunable infrared light source based on a new compact structure, i.e., an AlGaInAs semiconductor multiple quantum well (MQW) integrated with a liquid crystal Fabry-Pérot filter. The AlGaInAs MQW is used as a luminance layer that emits broadband light. By sandwiching the AlGaInAs and LC material with two conducting mirrors, the active light source with an optical filter can be tuned with a wide wavelength range. The filter filled with nematic liquid crystal enables continuous tuning of emission along the extraordinary mode and provides a 58 nm tuning range with a bias of 14 V. The simulation results of wavelength and tunability are consistent with the experimental results. Cholesteric liquid crystal with a planar texture is also used to examine the properties of the tunable light source. Under an electric field, all the helical liquid crystal molecules tend to be aligned parallel to the field. The variation of the refractive index is normal to the substrate surface, and the polarization-independent tuning range is 41 nm. The wide tuning range and the polarization properties observed when NLC and CLC are respectively incorporated into the AlGaInAs based Fabry-Pérot cavity suggest that this integration scheme has potential for applying to optical communication system.

© 2012 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(130.3120) Integrated optics : Integrated optics devices
(160.3710) Materials : Liquid crystals

ToC Category:
Integrated Optics

History
Original Manuscript: August 6, 2012
Revised Manuscript: September 13, 2012
Manuscript Accepted: September 15, 2012
Published: September 20, 2012

Citation
Yu-Hsin Yao, Chun-Ta Wang, Rui-Ren Chen, Hung-Chang Jau, Yi-Jen Chiu, and Tsung-Hsien Lin, "Wavelength tunable infrared light source based on semiconductor-integrated liquid crystal filter," Opt. Express 20, 22872-22877 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22872


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Changhasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett.31(3), 228–229 (1995). [CrossRef]
  2. J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, and H. L. Hartnagel, “Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter,” IEEE Photon. Technol. Lett.9(9), 1235–1237 (1997). [CrossRef]
  3. A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-mu m InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett.10(9), 1259–1261 (1998). [CrossRef]
  4. J. S. Patel, M. A. Saifi, D. W. Berreman, C. L. Lin, N. Andreadakis, and S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid-crystals in a Fabry-Perot Etalon,” Appl. Phys. Lett.57(17), 1718–1720 (1990). [CrossRef]
  5. M. W. Maeda, J. S. Patel, C. L. Lin, J. Horrobin, and R. Spicer, “Electronically tunable liquid-crystal-Etalon filter for high-density wdm systems,” IEEE Photon. Technol. Lett.2(11), 820–822 (1990). [CrossRef]
  6. G. Pucker, A. Mezzetti, M. Crivellari, P. Bellutti, A. Lui, N. Daldosso, and L. Pavesi, “Silicon-based near-infrared tunable filters filled with positive or negative dielectric anisotropic liquid crystals,” J. Appl. Phys.95(2), 767–769 (2004). [CrossRef]
  7. Y. Huang, T. X. Wu, and S.-T. Wu, “Simulations of liquid-crystal Fabry–Perot etalons by an improved 4x4matrix method,” J. Appl. Phys.93(5), 2490–2495 (2003).
  8. N. Neumann, M. Ebermann, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEMS7, 021104 (2008).
  9. J. S. Patel and S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot Etalon with a liquid-crystal film,” Appl. Phys. Lett.58(22), 2491–2493 (1991). [CrossRef]
  10. J. S. Patel and M. W. Maeda, “Tunable polarization diversity liquid-crystal wavelength filter,” IEEE Photon. Technol. Lett.3(8), 739–740 (1991). [CrossRef]
  11. J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett.75(6), 859–861 (1999). [CrossRef]
  12. Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett.89(2), 021103 (2006). [CrossRef]
  13. D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - Drive Scheme and Contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994). [CrossRef]
  14. T. H. Lin and A. Y. G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett.87(1), 011106 (2005). [CrossRef]
  15. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. (Deerfield Beach Fla.)21, 3915 (2009).
  16. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley, 2006).
  17. J. Oberhammer, F. Niklaus, and G. Stemme, “Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities,” Sens. Actuators A Phys.105(3), 297–304 (2003). [CrossRef]
  18. S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys.84(8), 4462–4465 (1998). [CrossRef]
  19. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited