OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 22987–22996

Tunable coherence-free microwave photonic bandpass filter based on double cross gain modulation technique

Erwin H. W. Chan  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 22987-22996 (2012)
http://dx.doi.org/10.1364/OE.20.022987


View Full Text Article

Enhanced HTML    Acrobat PDF (1164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tunable, coherence-free, high-resolution microwave photonic bandpass filter, which is compatible to be inserted in a conventional fiber optic link, is presented. It is based on using two cross gain modulation based wavelength converters in a recursive loop. The double cross gain modulation technique solves the semiconductor optical amplifier facet reflection problem in the conventional recursive structure; hence the new microwave photonic signal processor has no coherent interference and no phase-induced intensity noise. It allows arbitrary narrow-linewidth telecommunication-type lasers to be used while enabling stable filter operation to be realized. The filter passband frequency can be tuned by using a wavelength tunable laser and a wavelength dependent time delay component. Experimental results demonstrate robust high-resolution bandpass filter operation with narrow-linewidth sources, no phase-induced intensity noise and a high signal-to-noise ratio performance. Tunable coherence-free operation of the high-resolution bandpass filter is also demonstrated.

© 2012 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(350.4010) Other areas of optics : Microwaves
(070.2025) Fourier optics and signal processing : Discrete optical signal processing
(070.2615) Fourier optics and signal processing : Frequency filtering

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 21, 2012
Revised Manuscript: September 3, 2012
Manuscript Accepted: September 8, 2012
Published: September 24, 2012

Citation
Erwin H. W. Chan, "Tunable coherence-free microwave photonic bandpass filter based on double cross gain modulation technique," Opt. Express 20, 22987-22996 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-22987


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006). [CrossRef]
  2. B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay line processor,” J. Lightwave Technol.10(8), 1142–1147 (1992). [CrossRef]
  3. D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett.11(7), 874–876 (1999). [CrossRef]
  4. M. Y. Frankel and R. D. Esman, “Fiber-optic tunable microwave transversal filter,” IEEE Photon. Technol. Lett.7(2), 191–193 (1995). [CrossRef]
  5. G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett.12(9), 1183–1185 (2000). [CrossRef]
  6. V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett.15(4), 584–586 (2003). [CrossRef]
  7. D. Pastor, J. Capmany, S. Sales, P. Munoz, and B. Ortega, “Reconfigurable fiber-optic-based RF filters using current injection in multimode lasers,” IEEE Photon. Technol. Lett.13(11), 1224–1226 (2001). [CrossRef]
  8. G. D. Kim and S. S. Lee, “Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators,” IEEE Photon. Technol. Lett.19(13), 1008–1010 (2007). [CrossRef]
  9. Y. M. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett.19(24), 2042–2044 (2007). [CrossRef]
  10. E. H. W. Chan and R. A. Minasian, “Photonic notch filter without optical coherence limitations,” J. Lightwave Technol.22(7), 1811–1817 (2004). [CrossRef]
  11. E. H. W. Chan and R. A. Minasian, “Widely tuneable, high-FSR, coherence-free microwave photonic notch filter,” J. Lightwave Technol.26(8), 922–927 (2008). [CrossRef]
  12. E. H. W. Chan and R. A. Minasian, “Coherence-free equivalent negative tap microwave photonic notch filter based on delayed self-wavelength conversion,” IEEE Trans. Microw. Theory Tech.58(11), 3199–3205 (2010). [CrossRef]
  13. C. Pulikkaseril, E. H. W. Chan, and R. A. Minasian, “Coherence-free microwave photonic bandpass filter using a frequency-shifting recirculating delay line,” J. Lightwave Technol.28(3), 262–269 (2010). [CrossRef]
  14. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.23(23), 1775–1777 (2011). [CrossRef]
  15. N. You and R. A. Minasian, “Novel photonic recursive signal processor with reduced phase-induced intensity noise,” J. Lightwave Technol.24(7), 2558–2563 (2006). [CrossRef]
  16. B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightwave Technol.4(9), 1334–1351 (1986). [CrossRef]
  17. N. A. Olsson and J. P. Van Der Ziel, “Characteristics of a semiconductor laser pumped Brillouin amplifier with electronically controlled bandwidth,” J. Lightwave Technol.5(1), 147–153 (1987). [CrossRef]
  18. M. Asghari, I. H. White, and R. V. Penty, “Wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol.15(7), 1181–1190 (1997). [CrossRef]
  19. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol.14(6), 942–954 (1996). [CrossRef]
  20. B. Vidal, V. Polo, J. L. Corral, and J. Marti, “Harmonic suppressed photonic microwave filter,” J. Lightwave Technol.21(12), 3150–3154 (2003). [CrossRef]
  21. C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997). [CrossRef]
  22. T. Zaman, X. Guo, and R. J. Ram, “Integrated optical circulator in InP,” Conference on Lasers & Electro-Optics (CLEO) 1321–1323 (2005).
  23. M. Vanwolleghem, W. V. Parys, D. V. Thourhout, R. Baets, F. Lelarge, O. G. Lafaye, B. Thedrez, R. W. Speetjens, and J. D. Boeck, “First experimental demonstration of a monolithically integrated InP-based waveguide isolator,” Optical Fiber Communication Conference (OFC) 401–403 (2004).
  24. N. Calabretta, R. Stabile, A. Albores-Mejia, K. A. Williams, and H. J. S. Dorren, “InP monolithically integrated wavelength selector based on periodic optical filter and optical switch chain,” ECOC Technical Digest 1–3 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited