OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23281–23289

Raman probing of competitive laser heating and local recrystallization effect in ZnO nanocrystals

J. D. Ye, P. Parkinson, F.F. Ren, S. L. Gu, H.H. Tan, and C. Jagadish  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23281-23289 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2257 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The competitive laser-induced local heating and recrystallization effects in ZnO nanocrystals embedded in a MgO/ZnO stack are reported via resonance Raman spectra. The dependence of the intensity, energy, and resonance effects of the longitudinal optical (LO) phonon on laser excitation condition are discussed in the context of Fröhlich interaction. Redistribution of defects, impurity-diffusion, and grain regrowth caused by thermal and photochemical effects lead to significant changes in coupling strength of electron-phonon interaction, and the resonance behaviors are strongly affected by the interplay of local heating, heat trapping, and local structural modification in such nanostructures.

© 2012 OSA

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: May 18, 2012
Revised Manuscript: July 27, 2012
Manuscript Accepted: September 12, 2012
Published: September 25, 2012

J. D. Ye, P. Parkinson, F.F. Ren, S. L. Gu, H.H. Tan, and C. Jagadish, "Raman probing of competitive laser heating and local recrystallization effect in ZnO nanocrystals," Opt. Express 20, 23281-23289 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Kauschke and M. Cardona, “Resonant Raman scattering in semiconductors,” Phys. Scr.T25, 201–205 (1989). [CrossRef]
  2. M. R. Wagner, P. Zimmer, A. Hoffmann, and C. Thomsen, “Resonant Raman scattering at exciton intermediate states in ZnO,” Phys. Status Solidi1(5), 169–171 (2007) (RRL). [CrossRef]
  3. A. Compaan, M. C. Lee, and G. J. Trott, “Phonon populations by nanosecond-pulsed Raman scattering in Si,” Phys. Rev. B Condens. Matter32(10), 6731–6741 (1985). [CrossRef] [PubMed]
  4. S. K. Arguirova, Tz. Arguirov, D. Wolfframm, and J. Reif, “Influence of local heating on micro-Raman spectroscopy of silicon,” J. Appl. Phys.94(8), 4946–4949 (2003).
  5. K. W. Adu, H. R. Gutierrez, U. J. Kim, and P. C. Eklund, “Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study,” Phys. Rev. B73(15), 155333 (2006). [CrossRef]
  6. R. Jalilian, G. U. Sumanasekera, H. Chandrasekharan, and M. K. Sunkara, “Phonon confinement and laser heating effects in Germanium nanowires,” Phys. Rev. B74(15), 155421 (2006). [CrossRef]
  7. K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys.97(12), 124313 (2005). [CrossRef]
  8. E. Alarcon-Liado, J. Ibanez, R. Cusco, L. Artus, J. D. Prades, S. Estrade, and J. R. Morante, “Ultraviolet Raman scattering in ZnO nanowires: quasimode mixing and temperature effects,” J. Raman Spectrosc.42, 153–159 (2011).
  9. S. Sahoo and A. K. Arora, “Laser-power-induced multiphonon resonant Raman scattering in laser-heated CdS nanocrystal,” J. Phys. Chem. B114(12), 4199–4203 (2010). [CrossRef] [PubMed]
  10. S. S. Kurbanov, K. T. Igamberdiev, and T. W. Kang, “The UV-laser induced heating effect on photoluminescence from ZnO nanocrystals deposited on different substrates,” J. Phys. D Appl. Phys.43(11), 115401 (2010). [CrossRef]
  11. M. F. Cerqueira, M. I. Vasilevskiy, F. Oliveira, A. G. Rolo, T. Viseu, J. Ayres de Campos, E. Alves, and R. Correia, “Resonant Raman scattering in ZnO:Mn and ZnO:Mn:Al thin films grown by RF sputtering,” J. Phys. Condens. Matter23(33), 334205 (2011). [CrossRef] [PubMed]
  12. E. Alarcon-Liado, R. Cusco, L. Artus, J. Jimenez, B. Wang, and M. Callahan, “Raman scattering of quasimodes in ZnO,” J. Phys. Condens. Matter20, 445211 (2008).
  13. L. Bergman, X. B. Chen, J. L. Morrison, J. Huso, and A. P. Purdy, “Photoluminescence dynamics in ensembles of wide-band-gap nanocrystallites and powders,” J. Appl. Phys.96(1), 675–682 (2004). [CrossRef]
  14. D. Bäuerle, Laser Processing and Chemistry, Fourth Edition (Springer, 2011).
  15. X. B. Chen, J. L. Morrison, J. Huso, L. Bergman, and A. P. Purdy, “Ultraviolet Raman scattering of GaN nanocrystallites: Intrinsic versus collective phenomena,” J. Appl. Phys.97(2), 024302 (2005). [CrossRef]
  16. L. Bergman, X. B. Chen, J. Huso, J. L. Morrison, and H. Hoeck, “Raman scattering of polar modes of ZnO crystallites,” J. Appl. Phys.98(9), 093507 (2005). [CrossRef]
  17. A. Kaschner, M. Strassburg, A. Hoffmann, C. Thomsen, M. Bartels, K. Lischka, and D. Schikora, “Temporal evolution of resonant Raman-scattering in ZnCdSe quantum dots,” Appl. Phys. Lett.76(19), 2662–2664 (2000). [CrossRef]
  18. P. Martin, A. Torres, J. Jimenez, A. Rodriguez, J. Sangrador, and T. Rodriguez, “Reversible crystallization of a-Si1−xGex alloys under the combined effect of light and temperature,” J. Appl. Phys.96(1), 155–163 (2004). [CrossRef]
  19. J. D. Ye, K. W. Teoh, X. W. Sun, G. Q. Lo, D. L. Kwong, H. Zhao, S. L. Gu, R. Zhang, Y. D. Zheng, S. A. Oh, X. H. Zhang, and S. Tripathy, “Effects of alloying and localized electronic states on the resonant Raman spectra of Zn1−xMgxO nanocrystals,” Appl. Phys. Lett.91(9), 091901 (2007). [CrossRef]
  20. H. M. Cheng, K. F. Lin, H. C. Hsu, and W. F. Hsieh, “Size dependence of photoluminescence and resonant Raman scattering from ZnO quantum dots,” Appl. Phys. Lett.88(26), 261909 (2006). [CrossRef]
  21. R. P. Wang, G. Xu, and P. Jin, “Size dependence of electron-phonon coupling in ZnO nanowires,” Phys. Rev. B69(11), 113303 (2004). [CrossRef]
  22. J. Menéndez and M. Cardona, “Interference effects: A key to understanding forbidden Raman scattering by LO phonons in GaAs,” Phys. Rev. B Condens. Matter31(6), 3696–3704 (1985). [CrossRef] [PubMed]
  23. R. Cusco, E. A. Llado, J. Ibanez, L. Artus, J. Jimenez, B. G. Wang, and M. J. Callahan, “Temperature dependence of Raman scattering in ZnO,” Phys. Rev. B75(16), 165202 (2007). [CrossRef]
  24. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, “Transport properties and thermoelectric performance of (Zn1–yMgy)1–xAlxO,” J. Mater. Chem.8(2), 409–412 (1998). [CrossRef]
  25. R. M. Martin and T. C. Damen, “Breakdown of Selection Rules in Resonance Raman Scattering,” Phys. Rev. Lett.26(2), 86–88 (1971). [CrossRef]
  26. I. Ozerov, M. Arab, V. I. Safarov, W. Marine, S. Giorgio, M. Sentis, and L. Nanai, “Enhancement of exciton emission from ZnO nanocrystalline films by pulsed laser annealing,” Appl. Surf. Sci.226(1-3), 242–248 (2004). [CrossRef]
  27. H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun.39(5), 625–629 (1981). [CrossRef]
  28. I. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun.58(10), 739–741 (1986). [CrossRef]
  29. M. Rajalakshmi, A. K. Arora, B. S. Bendre, and S. Mahamuni, “Optical phonon confinement in zinc oxide nanoparticles,” J. Appl. Phys.87(5), 2445–2448 (2000). [CrossRef]
  30. K. Samanta, P. Bhattacharya, and R. S. Katiyar, “Temperature dependent E2 Raman modes in the ZnCoO ternary alloy,” Phys. Rev. B75(3), 035208 (2007). [CrossRef]
  31. V. A. Coleman, M. Buda, H. H. Tan, C. Jagadish, M. R. Phillips, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of blue shifts in ZnO/ZnMgO multiple quantum well structures by ion-implantation induced intermixing,” Semicond. Sci. Technol.21(3), L25–L28 (2006). [CrossRef]
  32. C. Bundesmann, A. Rahm, M. Lorenz, M. Grundmann, and M. Schubert, “Infrared optical properties of MgxZn1−xO thin films (0 < x < 1): Long-wavelength optical phonons and dielectric constants,” J. Appl. Phys.99(11), 113504 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited