OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23300–23317

Model of the dependence of the sun-induced chlorophyll a fluorescence quantum yield on the environmental factors in the sea

Miroslawa Ostrowska  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23300-23317 (2012)
http://dx.doi.org/10.1364/OE.20.023300


View Full Text Article

Enhanced HTML    Acrobat PDF (1436 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The paper discusses a physical model, obtained with the aid of statistical analyses, of the relationships between the sun-induced chlorophyll a fluorescence quantum yield and marine environmental factors. The relationships are based on a large set of empirical data from various ocean regions with basins of different trophicity, at different depths and in different seasons. Underwater spectral radiance and irradiance in the PAR spectral range were used to determine the quantum yield of sun-induced chlorophyll a fluorescence. From a statistical analysis a preliminary mathematical expression was derived to describe the fluorescence quantum yield as a function of the scalar irradiance, basin trophicity and the water temperature in situ. These relationships may be useful for analysing the budget of the light energy absorbed by phytoplankton pigments utilized in chemical and non-chemical quenching.

© 2012 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(260.2510) Physical optics : Fluorescence

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 6, 2012
Revised Manuscript: September 20, 2012
Manuscript Accepted: September 21, 2012
Published: September 25, 2012

Citation
Miroslawa Ostrowska, "Model of the dependence of the sun-induced chlorophyll a fluorescence quantum yield on the environmental factors in the sea," Opt. Express 20, 23300-23317 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23300


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Babin, J. C. Therriault, L. Legendre, B. Nieke, R. Reuter, and A. Condal, “Relationship between the maximum quantum yield of carbon fixation and the minimum quantum yield of chlorophyll a in vivo fluorescence in the Gulf of St. Lawrence,” Limnol. Oceanogr.40(5), 956–968 (1995). [CrossRef]
  2. Y. Huot, C. A. Brown, and J. J. Cullen, “New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products,” Limnol. Oceanogr. Methods3, 108–130 (2005). [CrossRef]
  3. Y. Huot, C. A. Brown, and J. J. Cullen, “Retrieval of phytoplankton biomass from simultaneous inversion of reflectance, the diffuse attenuation coefficient and sun-induced fluorescence in coastal waters,” J. Geophys. Res.112(C6), C06013 (2007), doi:. [CrossRef]
  4. S. Maritorena, A. Morel, and B. Gentili, “Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat,” Appl. Opt.39(36), 6725–6737 (2000). [CrossRef] [PubMed]
  5. J. R. Morrison, “In situ determination of quantum yield of phytoplankton chlorophyll a fluorescence: A simple algorithm, observations, and a model,” Limnol. Oceanogr.48(2), 618–631 (2003). [CrossRef]
  6. M. Ostrowska, M. Darecki, and B. Woźniak, “An attempt to use measurements of sun-inducted chlorophyll fluorescence to estimate chlorophyll a concentration in the Baltic Sea,” Proc. SPIE3222, 528–537 (1997). [CrossRef]
  7. M. Ostrowska, “Dependence of quantum yield of chlorophyll a fluorescence in the sea on environmental factors - the preliminary results,” in Proceedings of Ocean Optics XX conference, (Anchorage, Alaska 2010).
  8. J. D. H. Strickland and T. R. Parsons, “A practical handbook of seawater analysis. Pigment analysis,” Bull. Fish. Res. Bd. Can. 167, 1–311 (1968).
  9. G. M. Ferrari and S. Tassan, “A method using chemical oxidation to remove light absorption by phytoplankton pigments,” J. Phycol.35(5), 1090–1098 (1999). [CrossRef]
  10. S. Tassan and G. M. Ferrari, “A sensitivity analysis of the ‘Transmittance-Reflectance’ method for measuring light absorption by aquatic particles,” J. Plankton Res.24(8), 757–774 (2002). [CrossRef]
  11. S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr.40(8), 1358–1368 (1995). [CrossRef]
  12. D. Ficek, S. Kaczmarek, J. Stoń-Egiert, B. Woźniak, R. Majchrowski, and J. Dera, “Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a gaussian analysis of empirical data,” Oceanologia46(4), 533–555 (2004).
  13. J. Dera, “The characteristics of the euphotic zone irradiance in the sea,” Oceanologia 1, 9–98 (in Polish) (1971).
  14. B. Woźniak and K. Montwiłł, “The methods and techniques of the optical measurements in the sea,” Stud. Mater. Oceanol.7, 73–108 (1973).
  15. B. Woźniak, R. Hapter, and B. Maj, “The inflow of solar energy and the irradiance of the euphotic zone in the region of Ezcurra Inlet during the Antarctic summer of 1977/78,” Oceanologia15, 141–174 (1983).
  16. J. L. Mueller and R. W. Austin, “Ocean optics protocols for Sea-WiFS validation, revision l,” SeaWiFS technical report series. NASA Tech Memo25, 7–12 (1995).
  17. M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ.89(3), 326–350 (2004). [CrossRef]
  18. J. Gower, R. Doerffer, and G. A. Borstad, “Interpretation of the 685nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens.20(9), 1771–1786 (1999). [CrossRef]
  19. R. M. Letelier and M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS),” Remote Sens. Environ.58(2), 215–223 (1996). [CrossRef]
  20. F. E. Hoge, P. E. Lyon, R. N. Swift, J. K. Yungel, M. R. Abbott, R. M. Letelier, and W. E. Esaias, “Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne lidar results,” Appl. Opt.42(15), 2767–2771 (2003). [CrossRef] [PubMed]
  21. T. K. Westberry and D. A. Siegel, “Phytoplankton natural fluorescence variability in theSargasso Sea,” Deep Sea Res. Part I Oceanogr. Res. Pap.50(3), 417–434 (2003). [CrossRef]
  22. J. Dera, L. Gohs, R. Hapter, W. Kaiser, H. Prandke, W. Rüting, B. Woźniak, and S. M. Zalewski, “Untersuchungen zur Wechselwirkung zwischen optischen, physikalischen, biologischen und chemischen Umweltfaktoren in der Ostsee Geod. Geophys,” Veröff.IV, 13 (1974).
  23. L. Gohs, J. Dera, D. Gedziorowska, R. Hapter, M. Jonasz, H. Prandke, H. Siegel, G. Schenkel, J. Olszewski, B. Woźniak, and S. M. Zalewski, “Untersuchungen zur Wechselwirkung zwischen den optischen, physikalischen, biologischen und chemischen Umweltfaktoren in der Ostsee aus den Jahren 1974, 1975 und 1976 Geod. Geophys,” Veröff.IV, 25 (1978).
  24. D. A. Kiefer, W. S. Chamberlin, and C. R. Booth, “Natural fluorescence of chlorophyll a: relationship to photosynthesis and chlorophyll concentration in the western South Pacific gyre,” Limnol. Oceanogr.34(5), 868–881 (1989). [CrossRef]
  25. B. Woźniak and J. Dera, Light absorption in sea water (Springer, New York, 2007).
  26. M. Babin, A. Morel, and B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” J. Rem. Sens.17(12), 2417–2448 (1996). [CrossRef]
  27. P. G. Falkowski and D. A. Kiefer, “Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985). [CrossRef]
  28. C. Schallenberg, M. R. Lewis, D. E. Kelley, and J. Cullen, “Inferred influence of nutrient availability on the relationship between sun-induced chlorophyll fluorescence and incident irradiance in the Bering Sea,” J. of Geophys. Res. 113, C07046, doi: , 1–21 (2008). [CrossRef]
  29. S. R. Laney, R. M. Letelier, and M. R. Abbot, “Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii,” Limnol. Oceanogr.50(5), 1499–1510 (2005). [CrossRef]
  30. M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosc.6(5), 779–794 (2009). [CrossRef]
  31. A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr.26(3), 263–306 (1991). [CrossRef]
  32. A. Morel, D. Antoine, M. Babin, and Y. Dandonneau, “Measured and modeled primary production in the northeast Atlantic (Eumeli JGOFS program): the impact of natural variations in photosynthetic parameters on model predictive skill,” Deep-Sea Res.43(8), 1273–1304 (1996). [CrossRef]
  33. D. Antoine, J. M. Andre, and A. Morel, “Oceanic primary production: 2, estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll,” Global Biogeochem. Cycles10(1), 57–69 (1996). [CrossRef]
  34. J. Dera, Underwater Irradiance as a Factor Affecting Primary Production (Diss. and Mon. IO PAN, Sopot 7, 1995).
  35. B. Woźniak, J. Dera, and O. I. Koblentz-Mishke, “Bio-optical relationships for estimating primary production in the ocean,” Oceanologia33, 5–38 (1992).
  36. B. Woźniak, J. Dera, D. Ficek, R. Majchrowski, M. Ostrowska, and S. Kaczmarek, “Modelling light and photosynthesis in the marine environment,” Oceanologia45(2), 171–245 (2003).
  37. B. Woźniak, J. Dera, D. Ficek, M. Ostrowska, R. Majchrowski, S. Kaczmarek, and M. Kuzio, “The current bio-optical study of marine phytoplankton,” Opt. Appl.32(4), 731–747 (2002).
  38. B. Woźniak, J. Dera, D. Ficek, M. Ostrowska, and R. Majchrowski, “Dependence of the photosynthesis quantum yield in oceans on environmental factors,” Oceanologia44(4), 439–459 (2002).
  39. B. Woźniak, R. Majchrowski, M. Ostrowska, D. Ficek, J. Kunicka, and J. Dera, “Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 3: nonphotosynthetic pigment absorption factor,” Oceanologia49(4), 513–526 (2007).
  40. B. Woźniak, D. Ficek, M. Ostrowska, R. Majchrowski, and J. Dera, “Quantum yield of photosynthesis in the Baltic: a new mathematical expression for remote sensing applications,” Oceanologia49(4), 527–542 (2007).
  41. B. Woźniak, A. Krężel, M. Darecki, S. B. Woźniak, R. Majchrowski, M. Ostrowska, Ł. Kozłowski, D. Ficek, J. Olszewski, and J. Dera, “Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus,” Oceanologia50(4), 451–508 (2008).
  42. Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis ‘in situ’,” Limnol. Oceanogr.38(8), 1646–1665 (1993). [CrossRef]
  43. D. N. Matorin, P. S. Venediktov, Yu. N. Konev, Yu. V. Kazemirko, and A. B. Rubin, “Application of a double-flash, impulse, submersible fluorimeter in the determination of photosynthetic activity of natural phytoplankton,” Transactions Russian Acad. Sci. - Earth Sci. Sec.350(7), 1159–1161 (1996).
  44. M. Ostrowska, The application of fluorescence methods to the study of marine photosynthesis (Diss. and Monogr. IO PAN, Sopot, 15 (in Polish), 2001).
  45. M. Ostrowska, R. Majchrowski, D. N. Matorin, and B. Woźniak, “Variability of the specific fluorescence of chlorophyll in the ocean. Part 1: theory of classical 'in situ' chlorophyll fluorometry,” Oceanologia42(2), 203–219 (2000).
  46. D. Ficek, Modelling the quantum yield of photosynthesis in various marine systems (Diss. and Monogr, IO PAN, Sopot, 14 in Polish, 2001).
  47. B. Woźniak, K. Bradtke, M. Darecki, J. Dera, J. Dudzińska-Nowak, L. Dzierzbicka-Głowacka, D. Ficek, K. Furmańczyk, M. Kowalewski, A. Krężel, R. Majchrowski, M. Ostrowska, M. Paszkuta, J. Stoń-Egiert, M. Stramska, and T. Zapadka, “SatBałtyk - a Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 1: assumptions, scope and operating range,” Oceanologia53(4), 897–924 (2011), doi:. [CrossRef]
  48. B. Woźniak, K. Bradtke, M. Darecki, J. Dera, J. Dudzińska-Nowak, L. Dzierzbicka-Głowacka, D. Ficek, K. Furmańczyk, M. Kowalewski, A. Krężel, R. Majchrowski, M. Ostrowska, M. Paszkuta, J. Stoń-Egiert, M. Stramska, and T. Zapadka, “SatBałtyk - a Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 2: practical applicability and preliminary results,” Oceanologia 53(4), doi:. 925, 925–958 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited