OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23339–23348

Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors

Tobias S. Mansuripur, Stefan Menzel, Romain Blanchard, Laurent Diehl, Christian Pflügl, Yong Huang, Jae-Hyun Ryou, Russell D. Dupuis, Marko Loncar, and Federico Capasso  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23339-23348 (2012)
http://dx.doi.org/10.1364/OE.20.023339


View Full Text Article

Enhanced HTML    Acrobat PDF (2035 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a three-section, electrically pulsed quantum cascade laser which consists of a Fabry-Pérot section placed between two sampled grating distributed Bragg reflectors. The device is current-tuned between ten single modes spanning a range of 0.46 μm (63 cm−1), from 8.32 to 8.78 μm. The peak optical output power exceeds 280 mW for nine of the modes.

© 2012 OSA

OCIS Codes
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 2, 2012
Revised Manuscript: September 15, 2012
Manuscript Accepted: September 19, 2012
Published: September 26, 2012

Citation
Tobias S. Mansuripur, Stefan Menzel, Romain Blanchard, Laurent Diehl, Christian Pflügl, Yong Huang, Jae-Hyun Ryou, Russell D. Dupuis, Marko Loncar, and Federico Capasso, "Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors," Opt. Express 20, 23339-23348 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23339


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010). [CrossRef]
  2. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997). [CrossRef]
  3. P. Fuchs, J. Friedl, S. Höfling, J. Koeth, A. Forchel, L. Worschech, and M. Kamp, “Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector,” Opt. Express20(4), 3890–3897 (2012). [CrossRef] [PubMed]
  4. C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quant. Elec.38(6), 569–581 (2002). [CrossRef]
  5. R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004). [CrossRef]
  6. Y. Yao, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm(−1),” Appl. Phys. Lett.97(8), 081115 (2010). [CrossRef]
  7. K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett.96(24), 241107 (2010). [CrossRef]
  8. B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett.21(13), 914–916 (2009). [CrossRef]
  9. B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express17(18), 16216–16224 (2009). [CrossRef] [PubMed]
  10. A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express19(27), 26725–26732 (2011). [CrossRef] [PubMed]
  11. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett.95(6), 061103 (2009). [CrossRef]
  12. V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE Jour. Quant. Elec.29(6), 1824–1834 (1993). [CrossRef]
  13. R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011). [CrossRef]
  14. L. A. Coldren, US Patent # 4896325.
  15. S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012). [CrossRef]
  16. K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 µm,” IEEE Proc. Optoelect.148(1), 19–24 (2001). [CrossRef]
  17. Y. Huang, J.-H. Ryou, R. D. Dupuis, C. Pflügl, F. Capasso, K. Sun, A. M. Fischer, and F. A. Ponce, “Optimization of growth conditions for InGaAs/InAl/InP quantum cascade lasers by metalorganic chemical vapor deposition,” J. Cryst. Growth316(1), 75–80 (2011). [CrossRef]
  18. A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE Jour. Quant. Elec.44(1), 36–40 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited