OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23414–23421

Active tremor cancellation by a “Smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography

Cheol Song, Peter L. Gehlbach, and Jin U. Kang  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23414-23421 (2012)
http://dx.doi.org/10.1364/OE.20.023414


View Full Text Article

Enhanced HTML    Acrobat PDF (1216 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: Microsurgeons require dexterity to make precise and stable maneuvers to achieve surgical objectives and to minimize surgical risks during freehand procedures. This work presents a novel, common path, swept source optical coherence tomography-based “smart” micromanipulation aided robotic-surgical tool (SMART) that actively suppresses surgeon hand tremor. The tool allows enhanced tool tip stabilization, more accurate targeting and the potential to lower surgical risk. Freehand performance is compared to smart tool-assisted performance and includes assessment of the one-dimensional motion tremor in an active microsurgeon’s hand. Surgeon hand tremor—the ability to accurately locate a surgical target and maintain tool tip offset distances—were all improved by smart tool assistance.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(150.5758) Machine vision : Robotic and machine control

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 29, 2012
Revised Manuscript: August 24, 2012
Manuscript Accepted: August 26, 2012
Published: September 27, 2012

Citation
Cheol Song, Peter L. Gehlbach, and Jin U. Kang, "Active tremor cancellation by a “Smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography," Opt. Express 20, 23414-23421 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23414


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. N. Riviere, J. Gangloff, and M. Mathelin, “Robotic Compensation of Biological Motion to Enhance Surgical Accuracy,” Proc. IEEE94(9), 1705–1716 (2006). [CrossRef]
  2. N. Horio, M. Horiguchi, and N. Yamamoto, “Triamcinolone-Assisted Internal Limiting Membrane Peeling During Idiopathic Macular Hole Surgery,” Arch. Ophthalmol.123(1), 96–99 (2005). [CrossRef] [PubMed]
  3. R. K. Murthy and K. V. Chalam, “Assistant-Independent OptiFlex System for Contact and Noncontact Wide-Angle Viewing in Vitreoretinal Surgery,” Arch. Ophthalmol.128(4), 490–492 (2010). [CrossRef] [PubMed]
  4. R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999). [CrossRef]
  5. M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force Sensing in Robot Assisted Membrane Peeling for Vitreoretinal Surgery,” Med Image Comput Comput Assist Interv13(Pt 3), 303–310 (2010). [PubMed]
  6. B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med.42(3), 264–273 (2010). [CrossRef] [PubMed]
  7. R. A. MacLachlan, B. C. Becker, J. Cuevas Tabarés, G. W. Podnar, L. A. Lobes, and C. N. Riviere, “Micron: an actively stabilized handheld tool for microsurgery,” IEEE Trans. Robot.28(1), 195–212 (2012). [CrossRef]
  8. B. Bose, A. K. Kalra, S. Thukral, A. Sood, S. K. Guha, and S. Anand, “Tremor compensation for robotics assisted microsurgery,” Proc. 13th Annu. Int. Conf. IEEE Biomedical Engineering Society 3, 1067–1068 (1992)
  9. T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009). [CrossRef] [PubMed]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  11. Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett.35(20), 3315–3317 (2010). [CrossRef] [PubMed]
  12. C. Song, M. Ahn, and D. Gweon, “Polarization-sensitive spectral-domain optical coherence tomography using a multi-line single camera spectrometer,” Opt. Express18(23), 23805–23817 (2010). [CrossRef] [PubMed]
  13. X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, “Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery,” Biomed. Opt. Express3(5), 1062–1076 (2012). [CrossRef] [PubMed]
  14. J. Kang, J. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Voherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010). [CrossRef]
  15. K. Zhang, W. Wang, J. Han, and J. U. Kang, “A Surface Topology and Motion Compensation System for Microsurgery Guidance and Intervention Based on Common-Path Optical Coherence Tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009). [CrossRef] [PubMed]
  16. K. Zhang and J. U. Kang, “Common-path low-coherence interferometry fiber-optic sensor guided microincision,” J. Biomed. Opt.16(9), 095003 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited