OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23535–23541

275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment

Clara J. Saraceno, Florian Emaury, Oliver H. Heckl, Cyrill R. E. Baer, Martin Hoffmann, Cinia Schriber, Matthias Golling, Thomas Südmeyer, and Ursula Keller  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23535-23541 (2012)
http://dx.doi.org/10.1364/OE.20.023535


View Full Text Article

Enhanced HTML    Acrobat PDF (1332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an ultrafast thin disk laser that generates an average output power of 275 W, which is higher than any other modelocked laser oscillator. It is based on the gain material Yb:YAG and operates at a pulse duration of 583 fs and a repetition rate of 16.3 MHz resulting in a pulse energy of 16.9 μJ and a peak power of 25.6 MW. A SESAM designed for high damage threshold initiated and stabilized soliton modelocking. We reduced the nonlinearity of the atmosphere inside the cavity by several orders of magnitude by operating the oscillator in a vacuum environment. Thus soliton modelocking was achieved at moderate amounts of self-phase modulation and negative group delay dispersion. Our approach opens a new avenue for power scaling femtosecond oscillators to the kW level.

© 2012 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 16, 2012
Manuscript Accepted: September 24, 2012
Published: September 28, 2012

Citation
Clara J. Saraceno, Florian Emaury, Oliver H. Heckl, Cyrill R. E. Baer, Martin Hoffmann, Cinia Schriber, Matthias Golling, Thomas Südmeyer, and Ursula Keller, "275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment," Opt. Express 20, 23535-23541 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23535


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994). [CrossRef]
  2. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996). [CrossRef]
  3. J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett.25(11), 859–861 (2000). [CrossRef] [PubMed]
  4. D. Bauer, I. Zawischa, D. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 uJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express20(9), 9698–9704 (2012). [CrossRef]
  5. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35(13), 2302–2304 (2010). [CrossRef] [PubMed]
  6. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010). [CrossRef] [PubMed]
  7. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett.35(24), 4169–4171 (2010). [CrossRef] [PubMed]
  8. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett.36(24), 4746–4748 (2011). [CrossRef] [PubMed]
  9. G. Palmer, M. Schultze, M. Siegel, M. Emons, U. Bünting, and U. Morgner, “Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime,” Opt. Lett.33(14), 1608–1610 (2008). [CrossRef] [PubMed]
  10. O. H. Heckl, C. Kränkel, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, G. Huber, and U. Keller, “Continuous-wave and modelocked Yb:YCOB thin disk laser: first demonstration and future prospects,” Opt. Express18(18), 19201–19208 (2010). [CrossRef] [PubMed]
  11. S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, and F. Druon, “Yb:CaGdAlO4 thin-disk laser,” Opt. Lett.36(21), 4134–4136 (2011). [CrossRef] [PubMed]
  12. C. J. Saraceno, O. H. Heckl, C. R. E. Baer, M. Golling, T. Sudmeyer, K. Beil, C. Krankel, K. Petermann, G. Huber, and U. Keller, “CW and modelocked operation of an Yb:(Sc,Y,Lu)(2)O(3) thin-disk laser,” 2011 Conference on Lasers and Electro-Optics (CLEO) (2011).
  13. T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B97(2), 281–295 (2009). [CrossRef]
  14. K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater.19(1), 67–71 (2002). [CrossRef]
  15. R. Peters, C. Krankel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Sudmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102(3), 509–514 (2011). [CrossRef]
  16. A. Shirakawa, K. Takaichi, H. Yagi, J.-F. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. S. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express11(22), 2911–2916 (2003). [CrossRef] [PubMed]
  17. C. J. Saraceno, S. Pekarek, O. H. Heckl, C. R. E. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, G. Huber, U. Keller, and T. Südmeyer, “Self-referenceable frequency comb from an ultrafast thin disk laser,” Opt. Express20(9), 9650–9656 (2012). [CrossRef] [PubMed]
  18. C. J. Saraceno, O. H. Heckl, C. R. E. Baer, C. Schriber, M. Golling, K. Beil, C. Krankel, T. Sudmeyer, G. Huber, and U. Keller, “Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser,” Appl. Phys. B106(3), 559–562 (2012). [CrossRef]
  19. C. R. E. Baer, O. H. Heckl, C. J. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, “Frontiers in passively mode-locked high-power thin disk laser oscillators,” Opt. Express20(7), 7054–7065 (2012). [CrossRef] [PubMed]
  20. J. Neuhaus, D. Bauer, J. Kleinbauer, A. Killi, D. H. Sutter, and T. Dekorsy, “Numerical analysis of a sub-picosecond thin-disk laser oscillator with active multipass geometry showing a variation of pulse duration within one round trip,” J. Opt. Soc. Am. B27(1), 65–71 (2010). [CrossRef]
  21. R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B73(7), 653–662 (2001). [CrossRef]
  22. F. X. Kärtner and U. Keller, “Stabilization of soliton-like pulses with a slow saturable absorber,” Opt. Lett.20(1), 16–18 (1995). [CrossRef] [PubMed]
  23. S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express16(9), 6397–6407 (2008). [CrossRef] [PubMed]
  24. S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, “Pulse energy scaling to 5 microJ from a femtosecond thin disk laser,” Opt. Lett.31(18), 2728–2730 (2006). [CrossRef] [PubMed]
  25. V. Magni, “Multielement stable resonators containing a variable lens,” J. Opt. Soc. Am. A4(10), 1962–1969 (1987). [CrossRef]
  26. C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron.18(1), 29–41 (2012). [CrossRef]
  27. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express16(10), 7571–7579 (2008). [CrossRef] [PubMed]
  28. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B14(3), 650–660 (1997). [CrossRef]
  29. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-Axis Paths in Spherical Mirror Interferometers,” Appl. Opt.3(4), 523–526 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited