OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23589–23597

Entangled Bessel-Gaussian beams

Melanie McLaren, Megan Agnew, Jonathan Leach, Filippus S. Roux, Miles J. Padgett, Robert W. Boyd, and Andrew Forbes  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23589-23597 (2012)
http://dx.doi.org/10.1364/OE.20.023589


View Full Text Article

Enhanced HTML    Acrobat PDF (2440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Orbital angular momentum (OAM) entanglement is investigated in the Bessel-Gaussian (BG) basis. Having a readily adjustable radial scale, BG modes provide an alternative basis for OAM entanglement over Laguerre-Gaussian modes. We show that the OAM bandwidth in terms of BG modes can be increased by selection of particular radial wavevectors and leads to a flattening of the spectrum, which allows for higher dimensionality in the entangled state. We demonstrate entanglement in terms of BG modes by performing a Bell-type experiment and showing a violation of the Clauser-Horne-Shimony-Holt inequality for the = ±1 subspace. In addition, we use quantum state tomography to indicate higher-dimensional entanglement in terms of BG modes.

© 2012 OSA

OCIS Codes
(230.6120) Optical devices : Spatial light modulators
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: August 1, 2012
Revised Manuscript: September 21, 2012
Manuscript Accepted: September 22, 2012
Published: October 1, 2012

Citation
Melanie McLaren, Megan Agnew, Jonathan Leach, Filippus S. Roux, Miles J. Padgett, Robert W. Boyd, and Andrew Forbes, "Entangled Bessel-Gaussian beams," Opt. Express 20, 23589-23597 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Arnaut and G. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett.85, 286–289 (2000). [CrossRef] [PubMed]
  2. Franke-Arnold, S. S. Barnett, M. Padgett, and L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A65(3), 033823 (2002). [CrossRef]
  3. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412, 313–316 (2001). [CrossRef] [PubMed]
  4. T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995). [CrossRef] [PubMed]
  5. A. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
  6. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptograpy,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
  7. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).
  8. V. Salakhutdinov, E. Eliel, and W. Löffler, “Full-field quantum correlations of spatially entangled photons,” Phys. Rev. Lett.108, 173604 (2012). [CrossRef] [PubMed]
  9. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992). [CrossRef] [PubMed]
  10. J. Durnin, “Exact solutions for nondiffracting beams. i. the scalar theory,” J. Opt. Soc. Am. A4, 651–654 (1987). [CrossRef]
  11. J. Durnin, J. Miceli, and J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987). [CrossRef] [PubMed]
  12. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun.64, 491–495 (1987). [CrossRef]
  13. M. Agnew, J. Leach, M. McLaren, F. Roux, and R. Boyd, “Tomography of the quantum state of photons entangled in high dimensions,” Phys. Rev. A84, 062101 (2011). [CrossRef]
  14. D. James, P. Kwiat, W. Munro, and A. White, “Measurement of qubits,” Phys. Rev. A64, 052312 (2001). [CrossRef]
  15. R.T. Thew, K. Nemoto, A.G. White, and W.J. Munro, “Qudit quantum-state tomography,” Phys. Rev. A66, 012303 (2002). [CrossRef]
  16. V. Arrizon, “Optimum on-axis computer-generated hologram encoded into low-resolution phase- modulation devices,” Opt. Lett.28, 2521–2523 (2003). [CrossRef] [PubMed]
  17. J. Leach, B. Jack, M. Ritsch-Marte, R. Boyd, A. Jha, S. Barnett, S. Franke-Arnold, and M. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express17, 8287–8293 (2009). [CrossRef] [PubMed]
  18. R. Grobe, K. Rzazewski, and J. Eberly, “Measure of electron-electron correlation in atomic physics,” J. Phys. B-At. Mol. Opt.27, L503–L508 (1994). [CrossRef]
  19. A. Dada, J. Leach, G. Buller, M. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of the generalized Bell inequalities,” Nat. Phys.7, 677–680 (2011). [CrossRef]
  20. A. Vaziri, J.W Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher-dimensional entanglement: Qutrits of photon orbital angular momentum,” Phys. Rev. Lett.91, 227902 (2003). [CrossRef] [PubMed]
  21. J. Clauser, M. Horne, A. Shimony, and R. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett.23, 880–884 (1969). [CrossRef]
  22. B. Jack, J. Leach, H. Ritsch, S. Barnett, and M. Padgett, “Precise quantum tomography of photon pairs with entangled orbital angular momentum,” New J. of Phys.811, 103024 (2009). [CrossRef]
  23. S. Bose and V. Vedral, “Mixedness and teleportation,” Phys. Rev. A61, 040101(R) (2000). [CrossRef]
  24. D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett.88, 040404 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited