OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23598–23609

Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches

Brett A. Kruger, Arash Joushaghani, and Joyce K. S. Poon  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23598-23609 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3132 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present two types of designs for plasmonic switches based on hybridization between single interface surface plasmon polaritons and modes of a thin film of transition metal oxide material, vanadium dioxide (VO2). The design includes integrated, localized heaters that activate the VO2 transition. The device operation is investigated and optimized by electromagnetic, electrical, and thermal simulations. The large change in the VO2 refractive index in the infrared wavelength range enables highly compact and efficient plasmonic switches. The proposed designs achieve extinction ratios of 23–32 dB using only a 5 μm active region, a switching voltage of about 60 mV, and a switching power of about 9 mW.

© 2012 OSA

OCIS Codes
(160.6840) Materials : Thermo-optical materials
(130.4815) Integrated optics : Optical switching devices
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: August 1, 2012
Revised Manuscript: September 20, 2012
Manuscript Accepted: September 20, 2012
Published: October 1, 2012

Brett A. Kruger, Arash Joushaghani, and Joyce K. S. Poon, "Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches," Opt. Express 20, 23598-23609 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006). [CrossRef] [PubMed]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010). [CrossRef] [PubMed]
  3. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev.4, 562–567 (2010). [CrossRef]
  4. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9, 897–902 (2009). [CrossRef] [PubMed]
  5. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express17, 10757–10766 (2009). [CrossRef] [PubMed]
  6. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9, 4403–4411 (2009). [CrossRef] [PubMed]
  7. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, Th. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express19, 8855–8869 (2011). [CrossRef] [PubMed]
  8. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature487, 345–348 (2012). [PubMed]
  9. M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature487, 459–462 (2012). [CrossRef] [PubMed]
  10. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transitions in VO2,” J. Phys. Condens. Matter12, 8837–8845 (2000). [CrossRef]
  11. A. Crunteanu, J. Givernaud, P. Blondy, J.-C. Orlianges, C. Champeaux, and A. Catherinot, “Exploiting the semiconductor-metal phase transition of VO2 materials: a novel direction towards tuneable devices and systems for RF-microwave applications,” in Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits and Systems, M. Mukherjee, ed. (Intech, 2010), pp. 35–66.
  12. A. Cavalleri, Cs. Tóth, C. W. Siders, and J. A. Squier, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett.87, 237401 (2001). [CrossRef] [PubMed]
  13. S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys.105, 043502 (2009). [CrossRef]
  14. H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172, 788–798 (1968). [CrossRef]
  15. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009). [CrossRef] [PubMed]
  16. H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96, 221103 (2010). [CrossRef]
  17. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011). [CrossRef]
  18. M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photonics J.4, 707–714 (2012). [CrossRef]
  19. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the the vanadium dioxide metal-insulator phase transition,” Opt. Express18, 11192–11201 (2010). [CrossRef] [PubMed]
  20. J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE7597, 759710 (2010). [CrossRef]
  21. L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express20, 8700–8709 (2012). [CrossRef] [PubMed]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  23. S.- L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol.5, 5–15 (1987). [CrossRef]
  24. C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev.185, 1022–1033 (1969). [CrossRef]
  25. W. Zhao and Z. Lu, “Nanoplasmonic optical switch based on Ga-Si3N4-Ga waveguide,” Opt. Eng.50, 074002 (2011). [CrossRef]
  26. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett.8, 4048–4052 (2008). [CrossRef] [PubMed]
  27. A. Agrawal, C. Susut, G. Stafford, B. McMorran, H. Lezec, and A. A. Talin, “Integrated electrochromic nanoplasmonic optical switch,” in Conference on Lasers and Electro-Optics, p. QTuE5 (2011).
  28. S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express18, 27802–27819 (2010). [CrossRef]
  29. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010). [CrossRef] [PubMed]
  30. J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I.-C. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express19, 15265–15274 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited