OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23700–23719

Development and integration of xerogel polymeric absorbance micro-filters into lab-on-chip systems

Ester Carregal-Romero, César Fernández-Sánchez, Alma Eguizabal, Stefanie Demming, Stephanus Büttgenbach, and Andreu Llobera  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23700-23719 (2012)
http://dx.doi.org/10.1364/OE.20.023700


View Full Text Article

Enhanced HTML    Acrobat PDF (1784 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work reports on the implementation of different absorption micro-filters based on a dye-doped hybrid organic-inorganic xerogel polymeric material synthesized by the sol-gel process. Microstructures containing eight different filter widths were fabricated in polydimethylsiloxane (PDMS), bonded to glass substrates and filled with the corresponding dye doped polymeric material by a soft lithography approach. The filtering capacity as a function of dye concentration and filter width was studied and revealed a linear dependence with both parameters, as expected according to the Beer-Lambert law. Zero passband transmittance values and relatively sharp stopband regions were achieved with all the filters, also showing rejection levels between −6 dB and −55 dB. Finally, such filters were monolithically integrated into a disposable fluorescence-based photonic lab-on-a-chip (PhLoC) approach. Calibration curves carried out with a model fluorophore target analyte showed an over two-fold increase in sensitivity and a thirty-fold decrease of the limit of detection (LOD) compared with the values recorded using the same PhLoC system but without the polymeric filter structure. The results presented herein clearly indicate the feasibility of these xerogel-based absorbance filtering structures for being applied as low-cost optical components that can be easily incorporated into disposable fluorescence-based photonic lab on a chip systems.

© 2012 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(160.0160) Materials : Materials
(160.6060) Materials : Solgel
(350.2450) Other areas of optics : Filters, absorption
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: May 15, 2012
Revised Manuscript: July 6, 2012
Manuscript Accepted: July 23, 2012
Published: October 1, 2012

Citation
Ester Carregal-Romero, César Fernández-Sánchez, Alma Eguizabal, Stefanie Demming, Stephanus Büttgenbach, and Andreu Llobera, "Development and integration of xerogel polymeric absorbance micro-filters into lab-on-chip systems," Opt. Express 20, 23700-23719 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23700


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev.108(2), 423–461 (2008). [CrossRef] [PubMed]
  2. M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip7(8), 955–977 (2007). [CrossRef] [PubMed]
  3. H. A. Macleod, “Thin Film Optical Filters” (Institute of Physics Publishing, London, 2001)
  4. M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem.73(18), 4491–4498 (2001). [CrossRef] [PubMed]
  5. A. H. Mahan, R. Biswas, L. M. Gedvilas, D. L. Williamson, and B. C. Pan, “On the influence of short and medium range order on the material band gap in hydrogenated amorphous silicon,” J. Appl. Phys.96(7), 3818–3826 (2004). [CrossRef]
  6. O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip6(8), 981–987 (2006). [CrossRef] [PubMed]
  7. A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip10(15), 1987–1992 (2010). [CrossRef] [PubMed]
  8. M. Yamazaki, O. Hofmann, G. Ryu, L. Xiaoe, T. K. Lee, A. J. deMello, and J. C. deMello, “Non-emissive colour filters for fluorescence detection,” Lab Chip11(7), 1228–1233 (2011). [CrossRef] [PubMed]
  9. C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip9(10), 1371–1376 (2009). [CrossRef] [PubMed]
  10. L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev.90(1), 33–72 (1990). [CrossRef]
  11. J. Y. Wen and G. L. Wilkes, “Organic/inorganic hybrid network materials by the sol-gel approach,” Chem. Mater.8(8), 1667–1681 (1996). [CrossRef]
  12. C. Sanchez and F. Ribot, “Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry,” New J. Chem.18, 1007–1047 (1994).
  13. B. Lebeau and P. Innocenzi, “Hybrid materials for optics and photonics,” Chem. Soc. Rev.40(2), 886–906 (2011). [CrossRef] [PubMed]
  14. A. Llobera, V. J. Cadarso, E. Carregal-Romero, J. Brugger, C. Domínguez, and C. Fernández-Sánchez, “Fluorophore-doped xerogelantiresonant reflecting optical waveguides,” Opt. Express19(6), 5026–5039 (2011). [CrossRef] [PubMed]
  15. N. Tohge, M. Hasegawa, N. Noma, K. Kintaka, and J. Nishii, “Fabrication of two-dimensional gratings using photosensitive gel films and their characterization,” J. Sol-Gel Sci. Technol.26(1/3), 903–907 (2003). [CrossRef]
  16. X. H. Zhang, W. Que, C. Y. Jia, J. X. Hu, and W. G. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol.60(1), 71–80 (2011). [CrossRef]
  17. C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Dominguez, and A. Llobera, “Patterning high-aspect-ratio sol-gel structures by microtransfer molding,” Chem. Mater.20(8), 2662–2668 (2008). [CrossRef]
  18. C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev.40(2), 696–753 (2011). [CrossRef] [PubMed]
  19. Y. N. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed.37(5), 550–575 (1998). [CrossRef]
  20. D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine-6G,” J. Phys. Chem.88(24), 5956–5959 (1984). [CrossRef]
  21. G. Schottner, “Hybrid sol-gel-derived polymers: Applications of multifunctional materials,” Chem. Mater.13(10), 3422–3435 (2001). [CrossRef]
  22. M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.)23(44), 5318–5323 (2011). [CrossRef]
  23. P. Escribano, B. Julian-Lopez, J. Planelles-Arago, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and anobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials,” J. Mater. Chem.18(1), 23–40 (2007). [CrossRef]
  24. R. Pardo, M. Zayat, and D. Levy, “Photochromic organic-inorganic hybrid materials,” Chem. Soc. Rev.40(2), 672–687 (2011). [CrossRef] [PubMed]
  25. A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip4(1), 24–27 (2004). [CrossRef] [PubMed]
  26. A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip7(11), 1560–1566 (2007). [CrossRef] [PubMed]
  27. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst.9(1), 76–81 (2000). [CrossRef]
  28. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt.12(12), 2901–2908 (1973). [CrossRef] [PubMed]
  29. R. H. Glaser, G. L. Wilkes, and C. E. Bronnimann, “Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials,” J. Non-Cryst. Solids113(1), 73–87 (1989). [CrossRef]
  30. P. Lacan, C. Guizard, and L. Cot, “Chemical and rheological investigations of the sol-gel transition in organically-modified siloxanes,” J. Sol-Gel Sci. Technol.4(2), 151–162 (1995). [CrossRef]
  31. A. Llobera, R. Wilke, and S. Büttgenbach, “Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing,” Lab Chip5(5), 506–511 (2005). [CrossRef] [PubMed]
  32. V. Thomsen, D. Shatzlein, and D. Mercuro, “Limits of Detection in Spectroscopy,” Spectroscopy18, 112–114 (2003).
  33. A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip8(5), 794–800 (2008). [CrossRef] [PubMed]
  34. B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip5(10), 1041–1047 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited