OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23798–23810

Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime

Thomas Gerrits, Brice Calkins, Nathan Tomlin, Adriana E. Lita, Alan Migdall, Richard Mirin, and Sae Woo Nam  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 23798-23810 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1614 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Typically, transition edge sensors resolve photon number of up to 10 or 20 photons, depending on the wavelength and TES design. We extend that dynamic range up to 1000 photons, while maintaining sub-shot noise detection process uncertainty of the number of detected photons and beyond that show a monotonic response up to ≈ 6 · 106 photons in a single light pulse. This mode of operation, which heats the sensor far beyond its transition edge into the normal conductive regime, offers a technique for connecting single-photon-counting measurements to radiant-power measurements at picowatt levels. Connecting these two usually incompatible operating regimes in a single detector offers significant potential for directly tying photon counting measurements to conventional cryogenic radiometric standards. In addition, our measurements highlight the advantages of a photon-number state source over a coherent pulse source as a tool for characterizing such a detector.

© 2012 OSA

OCIS Codes
(040.3780) Detectors : Low light level
(040.5570) Detectors : Quantum detectors
(120.5630) Instrumentation, measurement, and metrology : Radiometry

ToC Category:

Original Manuscript: July 16, 2012
Revised Manuscript: September 11, 2012
Manuscript Accepted: September 18, 2012
Published: October 2, 2012

Thomas Gerrits, Brice Calkins, Nathan Tomlin, Adriana E. Lita, Alan Migdall, Richard Mirin, and Sae Woo Nam, "Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime," Opt. Express 20, 23798-23810 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Eppeldauer and J. E. Hardis, “Fourteen-decade photocurrent measurements with large-area silicon photodiodes at room temperature,” Appl. Opt.30, 3091–3099 (1991). [CrossRef] [PubMed]
  2. J. Mountford, G. Porrovecchio, M. Smid, and R. Smid, “Development of a switched integrator amplifier for high-accuracy optical measurements,” Appl. Opt.47, 5821–5828 (2008). [CrossRef]
  3. R. J. McIntyre, “Theory of microplasma instability in silicon,” J. Appl. Phys.32, 983–995 (1961). [CrossRef]
  4. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
  5. T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010). [CrossRef]
  6. E. Reiger, S. Dorenbos, V. Zwiller, A. Korneev, G. Chulkova, I. Milostnaya, O. Minaeva, G. Gol’tsman, J. Kitaygorsky, D. Pan, W. Sysz, A. Jukna, and R. Sobolewski, “Spectroscopy with nanostructured superconducting single photon detectors,” IEEE J. Sel. Topics Quantum Electron. Journal of13, 934 –943 (2007). [CrossRef]
  7. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated ingaas/inp avalanche photodiode,” Opt. Express17, 6275–6282 (2009). [CrossRef] [PubMed]
  8. M. A. Krainak, G. Yanga, W. Lu, and X. Sun,“Photon-counting detectors for space-based applications” Detectors and Imaging Devices: Infrared, Focal Plane, SPIE Proc. 7780, 77801J (2010).
  9. P. Walther, J. W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature429, 158–161 (2004). [CrossRef] [PubMed]
  10. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature429, 161–164 (2004). [CrossRef] [PubMed]
  11. K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor,” Opt. Express18, 8107–8114 (2010). [CrossRef] [PubMed]
  12. A. Garg and N.D. Mermin, “Detector inefficiencies in the Einstein-Podolsky-Rosen experiment,” Phys. Rev. D35, 3831–3835 (1987). [CrossRef]
  13. A. R. Beaumont, J. Y. Cheung, C. J. Chunnilall, J. Ireland, and M. G. White, “Providing reference standards and metrology for the few photon-photon counting community,” Nucl. Instrum. Meth. A610, 183–187 (2009). [CrossRef]
  14. G. Brida, M. Chekhova, M. Genovese, M. L. Rastello, and I. Ruo-Berchera, “Absolute calibration of analog detectors using stimulated parametric down conversion,” J. Mod. Optic.56, 401–404 (2009). [CrossRef]
  15. J. A. Chervenak, E. N. Grossman, C. D. Reintsema, K. D. Irwin, S. H. Moseley, and C. A. Allen, “Sub-picowatt precision radiometry using superconducting transition edge sensor bolometers,” IEEE Trans. Appl. Supercond., 11, 593–596 (2001). [CrossRef]
  16. S. I. Woods, S. M. Carr, A. C. Carter, T. M. Jung, and R. U. Datla, “Calibration of ultra-low infrared power at NIST,” SPIE Proc.7742, 77421P (2010). [CrossRef]
  17. R. Klein, R. Thornagel, and G. Ulm, “From single photons to milliwatt radiant power-electron storage rings as radiation sources with a high dynamic range,” Metrologia47, R33–R40 (2010). [CrossRef]
  18. G. P. Eppeldauer and D. C. Lynch, “Opto-mechanical and electronic mesign of a tunnel-trap Si radiometer,” J. Res. Natl. Inst. Stan.105, 813–828 (2000). [CrossRef]
  19. J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express19, 20347–20363 (2011). [CrossRef] [PubMed]
  20. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express16, 18790–18979 (2008). [CrossRef]
  21. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express19, 870–875 (2011). [CrossRef] [PubMed]
  22. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009). [CrossRef]
  23. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum.82, 071101 (2011). [CrossRef] [PubMed]
  24. P. Buzhan, B. Dolgoshein, A. Ilyin, V. Kaplin, S. Klemin, R. Mirzoyan, E. Popova, and M. Teshima, “The crosstalk problem in sipms and their use as light sensors for imaging atmospheric cherenkov telescopes,”Nucl. Instrum. Meth. A610, 131–134 (2009). [CrossRef]
  25. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett.83, 791–793 (2003). [CrossRef]
  26. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032–3040 (2008). [CrossRef] [PubMed]
  27. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett.73, 735–737 (1998). [CrossRef]
  28. A. G. Kozorezov, J. K. Wigmore, D. Martin, P. Verhoeve, and A. Peacock, “Electron energy down-conversion in thin superconducting films,” Phys. Rev. B75, 094513 (2007). [CrossRef]
  29. A. Lamas-Linares, T. Gerrits, N. A. Tomlin, A. Lita, B. Calkins, J. Beyer, R. Mirin, and S. W. Nam, “Transition edge sensors with low timing jitter at 1550 nm,” CLEO conference2012 http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2012-QTu3E.1
  30. A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express19, 9102–9110 (2011). [CrossRef] [PubMed]
  31. P. R. Tapster, S. F. Seward, and J. G. Rarity, “Sub-shot-noise measurement of modulated absorption using parametric down-conversion,” Phys. Rev. A44, 3266–3269 (1991). [CrossRef] [PubMed]
  32. G. Brida, L. Ciavarella, I. P. Degiovanni, M. Genovese, A. Migdall, M. G. Mingolla, M. G. A. Paris, F. Piacentini, and S. V. Polyakov, “Ancilla-assisted calibration of a measuring apparatus”, Phys. Rev. Lett., 108, 253601 (2012). [CrossRef]
  33. K. D. Irwin and G. C. Hilton, “Transition-edge sensors,” Cryogenic Particle Detection, Top. Appl. Phys.99, 63–152 (2005).
  34. K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett.66, 1998–2000 (1995). [CrossRef]
  35. E. Figueroa-Feliciano, B. Cabrera, A. Miller, S. Powell, T. Saab, and A. Walker, “Optimal filter analysis of energy-dependent pulse shapes and its application to TES detectors,” Nucl. Instrum. Meth. A444, 453–456 (2000). [CrossRef]
  36. D. Fixsen, S. Moseley, B. Cabrera, and E. Figueroa-Feliciano, “Pulse estimation in nonlinear detectors with nonstationary noise,” Nucl. Instrum. Meth. A520, 555–558 (2004). [CrossRef]
  37. Z. H. Levine, T. Gerrits, A. L. Migdall, D. V. Samarov, B. Calkins, A. E. Lita, and S. W. Nam, “An algorithm for finding clusters with a known distribution and its application to photon-number resolution using a superconducting transition-edge sensor,” J. Opt. Soc. Am. B29, 2066–2073 (2012). [CrossRef]
  38. T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express19, 24434–24447 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited