OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 24059–24067

Dependence of LC resonance wavelength on size of silver split-ring resonator fabricated by nanosphere lithography

Toshihiro Okamoto, Tomoya Otsuka, Shuji Sato, Tetsuya Fukuta, and Masanobu Haraguchi  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 24059-24067 (2012)
http://dx.doi.org/10.1364/OE.20.024059


View Full Text Article

Enhanced HTML    Acrobat PDF (2079 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricated silver split-ring resonators (SRRs) using nanosphere lithography and measured the LC resonance wavelength of single isolated SRRs in optical wavelength range. The SRRs’ sizes decreased when smaller polystyrene spheres were used as templates, and their LC resonance wavelength decreased to 721 nm. The LC resonance wavelength corresponding to the observed properties of the SRRs was calculated using the LC circuit model; we confirmed that the observational and calculated results agreed well. The LC resonance frequency of a miniaturized SRR with a constant shape was also calculated. For SRRs of the shape that we fabricated, the estimated short-wavelength limit was 426 nm.

© 2012 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(290.5820) Scattering : Scattering measurements
(300.0300) Spectroscopy : Spectroscopy
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: July 10, 2012
Revised Manuscript: August 28, 2012
Manuscript Accepted: September 27, 2012
Published: October 5, 2012

Citation
Toshihiro Okamoto, Tomoya Otsuka, Shuji Sato, Tetsuya Fukuta, and Masanobu Haraguchi, "Dependence of LC resonance wavelength on size of silver split-ring resonator fabricated by nanosphere lithography," Opt. Express 20, 24059-24067 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-24059


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  2. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett.95(22), 223902 (2005). [CrossRef] [PubMed]
  3. A. Ishikawa, T. Tanaka, and S. Kawata, “Frequency dependence of the magnetic response of split-ring resonators,” J. Opt. Soc. Am. B24(3), 510–515 (2007). [CrossRef]
  4. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.444(3-6), 101–202 (2007). [CrossRef]
  5. T. P. Meyrath, T. Zentgraf, and H. Giessen, “Lorentz model for metamaterials: Optical frequency resonance circuits,” Phys. Rev. B75(20), 205102 (2007). [CrossRef]
  6. S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.)1(1), 40–43 (2007). [CrossRef]
  7. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett.31(9), 1259–1261 (2006). [CrossRef] [PubMed]
  8. B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, and N. P. Johnson, “Magnetic response of split ring resonators (SRRs) at visible frequencies,” Opt. Express18(3), 3210–3218 (2010). [CrossRef] [PubMed]
  9. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005). [CrossRef] [PubMed]
  10. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  11. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006). [CrossRef] [PubMed]
  12. A. W. Clark, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors,” J. Am. Chem. Soc.131(48), 17615–17619 (2009). [CrossRef] [PubMed]
  13. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005). [CrossRef]
  14. T. Okamoto, T. Fukuta, S. Sato, M. Haraguchi, and M. Fukui, “Visible near-infrared light scattering of single silver split-ring structure made by nanosphere lithography,” Opt. Express19(8), 7068–7076 (2011). [CrossRef] [PubMed]
  15. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,” Opt. Express13, 2668–2677 (2005).
  16. C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. (Deerfield Beach Fla.)17(21), 2547–2549 (2005). [CrossRef]
  17. S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B69(24), 241101 (2004). [CrossRef]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  19. M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, “In situ and real-time observation of optical constants of metal films during growth,” Surf. Sci.227(1-2), 129–137 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited