OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 24068–24084

Optical levitation of a non-spherical particle in a loosely focused Gaussian beam

Cheong Bong Chang, Wei-Xi Huang, Kyung Heon Lee, and Hyung Jin Sung  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 24068-24084 (2012)
http://dx.doi.org/10.1364/OE.20.024068


View Full Text Article

Enhanced HTML    Acrobat PDF (2274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.

© 2012 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: July 20, 2012
Revised Manuscript: September 21, 2012
Manuscript Accepted: September 25, 2012
Published: October 5, 2012

Citation
Cheong Bong Chang, Wei-Xi Huang, Kyung Heon Lee, and Hyung Jin Sung, "Optical levitation of a non-spherical particle in a loosely focused Gaussian beam," Opt. Express 20, 24068-24084 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-24068


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct.23(1), 247–285 (1994). [CrossRef] [PubMed]
  2. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron.6(6), 841–856 (2000). [CrossRef]
  3. A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis29(24), 4813–4851 (2008). [CrossRef] [PubMed]
  4. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  6. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001). [CrossRef] [PubMed]
  7. S. J. Hart and A. V. Terray, “Refractive-index driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett.83(25), 5316–5318 (2003). [CrossRef]
  8. C. G. Hebert, A. Terray, and S. J. Hart, “Toward label-free optical fractionation of blood-optical force measurements of blood cells,” Anal. Chem.83(14), 5666–5672 (2011). [CrossRef] [PubMed]
  9. S. B. Kim, S. Y. Yoon, H. J. Sung, and S. S. Kim, “Cross-type optical particle separation in a microchannel,” Anal. Chem.80(7), 2628–2630 (2008). [CrossRef] [PubMed]
  10. S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Nonlinear particle behavior during cross-type optical particle separation,” Appl. Phys. Lett.95(26), 264101 (2009). [CrossRef]
  11. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996). [CrossRef]
  12. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992). [CrossRef] [PubMed]
  13. R. C. Gauthier and S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” J. Opt. Soc. Am. B12(9), 1680–1686 (1995). [CrossRef]
  14. S. B. Kim and S. S. Kim, “Radiation forces on spheres in loosely focused Gaussian beam: ray-optics regime,” J. Opt. Soc. Am. B23(5), 897–903 (2006). [CrossRef]
  15. P. B Bareil, Y. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express14(25), 12503–12509 (2006). [CrossRef] [PubMed]
  16. R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett.67(16), 2269–2271 (1995). [CrossRef]
  17. R. C. Gauthier, “Trapping model for the low-index ring-shaped micro-object in a focused, lowest-order Gaussian laser-beam profile,” J. Opt. Soc. Am. B14(4), 782–789 (1997). [CrossRef]
  18. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behaviour of erythrocytes in an optical trapping system,” Opt. Express7(13), 533–539 (2000). [CrossRef] [PubMed]
  19. I. Sraj, A. C. Szatmary, D. W. M. Marr, and C. D. Eggleton, “Dynamic ray tracing for modeling optical cell manipulation,” Opt. Express18(16), 16702–16714 (2010). [CrossRef] [PubMed]
  20. J. H. Zhou, M. C. Zhong, Z. Q. Wang, and Y. M. Li, “Calculation of optical forces on an ellipsoid using vectorial ray tracing method,” Opt. Express20(14), 14928–14937 (2012). [CrossRef] [PubMed]
  21. Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express19(17), 16044–16057 (2011). [CrossRef] [PubMed]
  22. F. Xu, K. F. Ren, G. Gouesbet, X. S. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(2), 026613 (2007). [CrossRef] [PubMed]
  23. Y. K. Nahmias, B. Z. Gao, and D. J. Odde, “Dimensionless parameters for the design of optical traps and laser guidance systems,” Appl. Opt.43(20), 3999–4006 (2004). [CrossRef] [PubMed]
  24. T. Moller and B. Trumbore, “Fast, minimum storage ray-triangle intersection,” J. Graphics, GPU, Games Tools2, 21–28 (1997).
  25. S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett.27(20), 1831–1832 (1991). [CrossRef]
  26. S. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express13(12), 4745–4751 (2005). [CrossRef] [PubMed]
  27. S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A24(2), 430–443 (2007). [CrossRef] [PubMed]
  28. S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A84(5), 053808 (2011). [CrossRef]
  29. M. Kinnunen, A. Kauppila, A. Karmenyan, and R. Myllylä, “Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level,” Biomed. Opt. Express2(7), 1803–1814 (2011). [CrossRef] [PubMed]
  30. S. Yan and B. Yao, “Transverse trapping forces of focused Gaussian beam on ellipsoidal particles,” J. Opt. Soc. Am. B24(7), 1596–1602 (2007). [CrossRef]
  31. W.-X. Huang, C. B. Chang, and H. J. Sung, “An improved penalty immersed boundary method for fluid-flexible body interaction,” J. Comput. Phys.230(12), 5061–5079 (2011). [CrossRef]
  32. C. S. Peskin, “The immersed boundary method,” Acta Numer.11, 479–517 (2002). [CrossRef]
  33. K. Kim, S.-J. Baek, and H. J. Sung, “An implicit velocity decoupling procedure for incompressible Navier-Stokes equations,” Int. J. Numer. Methods Fluids38(2), 125–138 (2002). [CrossRef]
  34. M. Uhlmann, “An immersed boundary method with direct forcing for the simulation of particulate flows,” J. Comput. Phys.209(2), 448–476 (2005). [CrossRef]
  35. F. Cirak, M. Ortiz, and P. Schroder, “Subdivision surfaces: a new paradigm for thin-shell finite-element analysis,” Int. J. Numer. Methods Eng.47, 2039–2072 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited